TL
FORTR

INSTRUCTION MaANUAL

This document originally prepared in 1983 by
Leslie O’'Hagan

Leon Tietz
John T. Yantis

—Edited by Lee Stewart (2012)

i

Dedication

This diskette-based Forth Language system for the Texas Instruments TI-99/4A Home Computer
was adapted by Leon Tietz and Leslie O’Hagan of the TI Corporate Engineering Center from Ed
Ferguson’s TMS9900 implementation of the Forth Interest Group (FIG) standard kernel. This
system was placed in the public domain “as is” by Texas Instruments on December 21, 1983, by
sending one copy of this 77 Forth Instruction Manual and the TI Forth System diskette to each of
the Tl-recognized TI-99/4A Home Computer User Groups as of that date. There were no more
copies made, and none are available from Texas Instruments. TI Forth had not undergone the
testing and evaluation normally given a product which is intended for distribution at the time TI
withdrew from the Home Computer market. Although both the diskette and this manual may
contain errors and omissions, TI Forth for the TI-99/4A Home Computer will not be supported
by TI in any way, shape, form or fashion. What is contained in this manual and on the
accompanying TI Forth System diskette is all that exists of this system, and is its sole reference.

Texas Instruments Incorporated (hereinafter “TI”) hereby relinquishes any and all proprietary
claims to the software language known as “TI Forth” to the public for free use thereof, without
reservations on the part of TI. It should be understood that the TI Forth software language is not
subject to any warranties of fitness, either express or implied, by TI, and TI makes no
representations as to the fitness of the TI Forth software language for any intended application by
the user. Any use of the TI Forth software language is specifically at the discretion of the user
who assumes the entire responsibility for such use.

il

Table of Contents

DT LT () & PSSR il
I INETOAUCTION. ..ttt ettt sh e bt ettt et sateea e sbee sttt e e bbeeebteeenneeeas 1
1.1 EQIEO1"S INOTC.....eviiieieiie ettt ettt ettt e ettt e ettt e e e tb e e ettt e e eaaeeeeabseeesaaeeeessaeeensseeenasaeeas 2

1.2 Starting FOTthu.......coooiiiiiiie sttt e e et e e et e e etv e e e sataee e e nsenasaeeeas 3

B €781 Yo 7V 1<« RO SU U RSP 5
2.1 Stack Manipulation..........cccueeciieeriieiiieriierieereeerieeeeeereesteeseaeessbe e saesseeessaeasseessssaeeessnssens 6
2.2 Arithmetic and Logical OPerationscceeveeeriieeiieeiieesieesieesieesieeeiteeieeereeeesneaeeee e e 6

2.3 CompPariSON OPETALIONSccvvieeeurireeiiieeerrreeeiteeeesaeeeserteeasseeesssseeasssseessssssssssssseseeasesssssnnes 7
2.4 MemOry ACCESS OPETALIONScccveerreerrierereerireesreeereesseesseessseessseasssessseessseesseessssseeessnsnses 7

2.5 CONLTOL SEIUCTUIES ...eeuteeuiieiiieiieitiesttet ettt ettt et ettt et se e ebtesbe e bt et e eabe et e saeesbeeesaneeesanee 8
2.6 Input and Output to/from the Terminalccoccoeriiiiiiiiiiiie e 9
2.7 NUMETIC FOIMATING ...eeoiviiiiiiiieciiie ettt ettt e et e et e e e st e e eeree e s taeeesabaeesneraeaaaeens 10

2.8 Disk-Related WOTdS.c.oecuiiiiiiieiieii ettt sttt e an 10
2.9 DEfINING WOTAS.......eeiiieiiieiieeiie ettt et e eiteettesteesbeessseesseesssaessseessseessseessseesseeseenns 11
2.10 MiSCellaneous WOTMS........ccuviiiiiiiiiiiieeeiee ettt ettt et e e e e e aa e e etae e eseveeeeersaeeeeeas 11

3 How to Use the FOrth Editor.......ccc.coiiiiiiiiie ettt 13
3.1 Forth Screen Layout Caveat..........cccvvivveeeiieiciienieerieeiteeieesveesereeseneesereesreessraessseessneasnsnns 14

3.2 The Two TI FOrth EditOrS.......cooiiiiiiiiiieiieeecee e e e 14

3.3 Editing INStIUCIONS. .. .eeetiiiiiieiieeiee et ettt ettt ettt et e et e s teeset e e ateesbeeebeeenbeesasneeaeenns 14

4 MEIMOTY IMAPS. . eeeetriieeiieeeiiieeesteeeesiteeestteeesteeeesseeeasseeassseesssseeassseeasssseesssaeeassseeessseeenssseeees 17
o VA D) Y 1<) o) LY - o ST 17
4.2 CPU MEIMOTY ... ttteiiieeeeiiteeeiteeeeteeestteeeetteesenteeessteessnsaeesasseeesasseeeasseesanseessanseesanseeaeaseens 18

4.3 CPURAM Pal....ooiiiiieiieece ettt ettt et et e e e e e ennneeennneas 19
4.4 LoW MemOTY EXPANSION......ccciciiiiieiiiieiiieeeiiieeeiteeesiteeesereeesstseeeessesessseeesssseesssssesessseeasens 20

4.5 High MemoOry EXPanSIiOn.........c.cccveevrieiiieiiierieesieeieeereesereesseessseesssessssssssesssesssssssseesens 20

5 System Synonyms and Miscellaneous UtIIItIes.ccueeevvervierieirieiiiee e e esve e eireee e 21
5.1 SYStEIM SYNOMYIMIS. ...ceeiuiiiiiiiiiiiiiie ettt ettt ettt e et e e sbbeessabeeessabeeessnnaanes 21
5.1.1 VDP RAM ReEaA/WTIL....ccuuieuiieiieieieeiieie ettt ettt ettt sttt et eeenteeeeneeeas 22

5.1.2 Extended Utilities: GPLLNK, XMLLNK AND DSRLNK........cccccteiiriiiieeeieene 23

5.1.3 VDP Write-Only REGISIETS.eeccvierrieriieiriiieiieeiiesieesreesteesreestneesesnneeeessnssneeensnns 24

5.1.4 VDP RAM Single-Byte Logical Operations...........ccceeceeerveeriieenieenieeniieeeesiiieeeeenns 24

5.2 DASK ULIIIEIES. ... eeeteeiieeie ettt ettt ettt e et e st e sate e bt e ebeeebeeeabeeeeeeaes 24
5.2.1 Disk Formatting Utility........ccccceuieeiiiiiiiiiiiieiie e ciee e sreesreeseve e esreessreeseree e e e 25

5.2.2 Disk and Screen Copying UtIlItIeS.......c.cvercvierciieriirerieeriieeieesieesreesreesneeseenreeeeenes 25

5.3 LiStING ULIIIEIES..ccueeeeteieeiieieee ettt sttt sttt et e et eenabeee e 27

5.4 DEDUZEZING.eviieiiiieeeiiee ettt e etee e ettt e estreeeestbeeesebbee e tbaeesssseeesssseessseeeesssssssaaaaaeessessssssssns 27
5.4.1 Dump Information to Terminal..........c.ccccveriuieriieriiieiieeree e ereeeerree e 27

5.4.2 Tracing Word EXECULION.cccuterivieriiieriieesiieetiesieestee st esreeseeesseessseessseesssnneeesnnes 28

543 RECUISION. ...c.utiiiiiiiieeiiee ettt e ettt e ettt e e ettt e e te e e eetveeeetaeeeessaeeesaeeeentseeesssseeeansssssseeeens 29

5.5 RanNdom NUMDETS.eeiuiiiiiiiiieeiie ettt ettt ettt e st e st et e e e e enabaeeeeeaas 29

5.6 Miscellaneous INStITUCLIONS.cc.eiiuiiriieieeie ettt ettt e e es 30

v

6 An Introduction t0 GTAPRICS.......cceiiiiiiieiieeiiie sttt erie et et e ettt e bt e sbeeseteeseeeseeenseesnseesnseens 31

6.1 GIaphiCs MOAES.eeiueieiiieiiie ettt ettt ettt et e et e e bt e sate e sateesateeeeanneeeaeeanns 31
6.2 FOrth Graphics WOTdS.......cccuviiiiiiieiiie ettt ettt e et ee et e e seveeesebaeesnreeessennnnns 32
6.3 COLOT CRANZES. .. .c.vvieiieeiieitieeteestee sttt estteeseteettesbeeesseessseessseessseesseassseaesssssseeesssssseeesnsnes 32
6.4 Placing Characters on the SCIEeN..........cceciiiiiiiiiiieiiieie et e e e 33
6.5 Defining NeW CharacCters........cccuiiiiieriiieiieeriieeteeetee et eie et ettt e siteesbeesteesabeesabeesnneeaeenas 34
0.0 SPTILES . eeeeivreeeieieeeeitieesetteeerteeeetteeeseseeeetseeeassseeassssaeasseeeasssaeasssaeeassseeeasssaeaassseeaaseessssssses 35
6.6.1 MagnifiCAtION......ccuiiiiieiiieiiierte ettt eiteeieeeteesv e e b e e b e e tbeessaeesseessseesssesssseessseesseesnns 35
6.6.2 Sprite INTtIAlIZAtION.eeviieiiieciieeiee ettt sre e e e e s entbae e e s snraeeeeennes 36
6.6.3 Using Sprites in Bit-Map Mode...........occoeiiiiiiiiieiee et 37
6.0.4 CIEatiNg SPIILES....eeeerurreeirieeiiieeeietieeesteeeesteeeserreessseeeassseeesssseeesssseesssseeesssseessssseennns 37
6.6.5 SPIite AULOMOTION. .. .c.uviiiieitieiiierreerteestteeieeeteesseesebeessseessreessaeasseessseessseessseessseenes 39
6.6.6 Distance and Coincidences betWeen SPrites.........ccccccvervrerveerieeiiieeeeeriieeeesriineeeens 40
6.0.7 DEICTING SPIILES. ...eetieeiieiiieiiieeie ettt te et te et e et e sttt ettt e tee e bt e ebeeebeesnteesateesaeeesaeeeas 41
6.7 MUItICOLIOT GTAPIICS. ... eiiiiiieeiiieeiiie e ettt e ettt e et e e et eeerebeeesebaeesstseeesreeeesseeessssaaaasessssnnes 42
6.8 USING JOYSTICKS.evieirieieiiiiiieiieeiteeiee et tesr e s teestae e st e etaeesttessteessseessseessseessseeessssnsenennnnes 42
6.9 DOt GTAPNICS. ... eeovieiiiieiieeie et eeeeite et e st e sttt e st e e tae e teeesseesnbeesaseessseessseeseeasaeennssaeesanns 44
6.10 SPECIAl SOUNAS.....eieeieetieeiee ettt ettt et e st et eetteesbe e e beeebeeeteesnbeesaneeeeeenns 45
6.11 Constants and Variables Used in Graphics Programming............c.ccceeevvveeenveeeecnennnnnnnen. 46
7 The Floating Point Support PaCKage..........c.cccvvveriiiiiiieiiieiiiecie sttt e s sraee e 47
7.1 Floating Point Stack Manipulation............ccceceveeriieniieeiiesieerieeeie ettt saeesene e 47
7.2 Floating Point Fetch and StOre..........cooiiiiiiiiiii et 48
7.3 Floating Point Conversion WOrdS............cccuiieiiiieiroiieeeniieeecieeesieeeesreeeeereeesereeeeaeeeeeens 48
7.4 Floating Point NUmMDBEr ENtry.........cccceveiiiriiiiiiiiieciie et svee e sre e snraae e ees 48
7.5 Floating Point ATIthMEtiC.cueiriiieiieiiie ettt ettt e e e eneeenneeens 48
7.6 Floating Point CompariSOn WOTrdS.c.eeiiiiriieiiieiieeiee ettt ettt ee e e 49
7.7 Formatting and Printing Floating Point NUMDbETS...........cccceevciiiiriiiieniiiieee e, 49
7.8 Transcendental FUNCLIONS.coiiiiiiiiiiiie ettt et 50
7.9 Interface to the Floating Point ROULINES..........cccveriiiriiieniiiiiiecieceeee e 50
8 Access to File I/O Using TI-99/4A Device Service Routines..........ccocceevveeviireiniiieeeeniiienene 52
8.1 The Peripheral Access BIOCK (PAB)......coociiiiiiiii sttt 52
8.2 File Setup and I/O Variables..........ccouevvieiiieriieie e sre e eeee e sraesseraee e esene 53
8.3 File ALrIDULE WOTAS.eeutiiiiiiiiiiiieiiett ettt st et 54
8.4 Words that Perform File I/O.........occooiiiiiiii e 55
8.5 Alternate INput and OULPUL.........eeeeiuviieiiiie ettt e e etee e e seerrrreeeeaeeeesssssnnnns 59
8.6 File I/0 Example 1: Relative Disk File.........cccccovieeiiiiiiieniiiiiiicir e 59
8.7 File I/O Example 2: Sequential RS232 File........ccccocveviiiiiiiiiiiecieeee e 61
9 The TI Forth 9900 ASSEMDIET..........coiitiiiiieiiieieee ettt ettt ettt estee e e abeeeeeeaes 62
9.1 TMS9900 ASSEMDBLY MNEMOMNICS........vveeererireririeeriireeesereeessereeesssreeessreeesssseeessseeessseeesessans 62
9.2 Forth’s WorksSpace REZISLEIS.........eevuiiiiiieiiie et eieeiteereesvee e streene e eseraeeessssnnaeeeenes 63
9.3 Workspace Register AAAIESSING.........eeeierriieiiiieriieeie e eieeeiee e e see e e e seeeeeesssneraeeeeenns 64
9.4 Symbolic Memory AddIESSING........eeeiuiieriiieiieeieeeieeeie ettt etteetee et e e e ssebteee e e sieeeeeeas 64
9.5 Workspace Register Indirect AddresSing.........cc.vvevvveeiriiiierciieeeiee et ee e 65
9.6 Workspace Register Indirect Auto-increment Addressing.........c.occveevveeecveeeercnveeeesreneennnn 65

v

9.7 Indexed Memory AdAIESSING.......c..eevveiriiieriiieeieerieerieeieeeieeereesreesereeteeeseesseessssaeeesnnns 65

9.8 Addressing Mode Words for Special RegiSters..........ccocvriiieriiiniiiiiiiiieceeeeeeeeeeee 65
9.9 Handling the Forth Stacks..........cc.ciiiiiiiioiiiiiie sttt e e e 66
9.10 Structured ASSEMbIET CONSLIUCES.eeoveruieieieriietieie ettt ettt eee s e e eeeeeeeeeees 66
9.11 Assembler JUMP TOKENS........cccuiiriiiiiieiiieeite sttt eeee et eiee e e sreeseeeessreeesennneeeeanns 67
9.12 Assembly Example for Structured Constructs..........cueeviiereeiiiieniiieniiesie et 67

10 Interrupt Service Routines (ISRS).....c.uiiiiuiiiiiiiii ettt et e e e e e e e 69
10.1 Installing a Forth Language Interrupt Service Routine...........cccceevveevieeiciiencrienieenneenen. 69
10.2 An Example of an Interrupt Service ROUtINE..........ceeveviieiiiriiiiiniieiieeiiee e 70
10.3 Installing the ISR......coouiiiiiee ettt e e e et e e 70
10.4 Some Additional Thoughts Concerning the Use of ISRS..........ccecviieiviiiieeeeeiiiiiiiee, 71

L o0 5000 o R 72
11.1 BSAVE and BLOAD.......coutiiiiietetet ettt ettt ettt e s e e 72
11.1.1 Customizing How TI Forth Boots Up........ccooiieiiiiiiiiiiieiiieeeeee e 73

11.1.2 An Overlay System with BSAVE/BLOAD.........ccooviiiiiii e 74

11.1.3 An Easier Overlay System in SOUrce Code........ccovevvierrieriierieeiieeiieereeeeevveenss 75

11.2 Conditional Loads........coouieiiiiiiiiieieee ettt st s 76
11.3 Memory Resident MESSAZES.ccccueeiurieriieriieeiiieeiieetee et e et e st e siteesttee e e eneeeeeessnneeeeeeans 77
11,4 CRU WOTAS. ettt ettt ettt ettt ettt e st e st e sabe e e e ettt e e e saantaeeesenns 77

12 TI Forth Dictionary ENtry StrUCTUIEC.cccviiviieirieicriecree st et ereeeeeteesreesreesereeseneessasnaaee s 78
12,1 LANK FIELA. ..ottt ettt et ettt e s 78
12.2 NAME FICLA. ... eiiiiiiiie ettt ettt e sat e e ae e et e e bt e ebeeeas 78
12.3 COAE FIIA. ...ttt ettt e e et et et e e teeneeeaeesneenneens 79
12.4 Parameter FIeld.......coouiiuiiiieiieieee ettt ettt ettt e 80
Appendix A ASCII Keycodes (Sequential Order)...........cceeveeerieeiiieiiiieniierie e 81
Appendix B ASCII Keycodes (Keyboard Order)..........coceeriieriieniieiiieiieeiee st 83
Appendix C Differences between Starting FORTH and TI Forth...........cccooveiiiiiiiiiiiii. 85
Appendix D The TI FOrth GIOSSArY........cccveiiieiiieriienieeieesreestee et esaeeieeestrraeesenerseeesesnnes 92
D.1 Explanation of Some Terms and Abbreviations..........cccceecuerierieneeneniienieniesee e 92
D.2 TI Forth Word DeSCTIPHIONS.eeiuiieiieeiieeieeeitesiieesite et eiee st e eteesateesaeeesbeee e e snaeeeeeans 93
Appendix E User Variables in TI FOrth..........ccccooociiiiiiiiiiiie e 156
E.1 TI Forth User Variables (Address Offset Order)..........ccvevcvveriiieriieenieeeeniiieeeeeiieee e 156
E.2 TI Forth User Variables (Variable Name Order)..........ccccceeveeeeiiiieeiiieeeeiiiieeeeeeeeeeeeees 158
Appendix F TI Forth Load Option DIir€Ctory..........ccueeriieiiieiieiiieeieeeie et 160
F.1 Option: -SYNONYMS... .ottt ettt ettt e et e e e re e e s taaeessstasaraeeaaesesessssnnnnns 160
F.2 Option: -EDITOR (40-Column Editor)........c.ccccveriieriiiaiieeiieciie e erreeireee e 160
F.3 Option: “COPYoiiiieeiie ettt ettt ettt ettt ettt e st e st e e snbeesaseesnsraeeeennnnes 160
F.4 Option: -DUMP.......oiiiii ettt ettt ettt e e e e e 161
F.50ption: -TRACE ...ttt ettt e et e e ve e e e tre e s sbaeesssaeeensseeennnns 161
F.6 Option: -FLOATcoooi ottt ettt ettt e et e et e e beesstaesebaessbaessaeessaeesaeesssnens 161
F.7 Option: -TEXT....ccoiiioieeiie ettt sttt ettt e st e s beesaaeestaeessaeeenssaeeesennssneeesennsees 162
F.8 Option: -GRAPHL.....oooiiiiii ettt et e e e 162
F.9 Option: -IMULTL......ccuuiiiiiiieiie ettt et e e ette e et e e eive e e stvaeesaaaeeeeeennnnnnnnns 162
F.10 Option: -GRAPH2......c..oiiiieie ettt ettt sera e b e e e sebeetb e e e s essnaaeesensnnes 162

vi

FoIT Option: =SPLIT....ccuiiiiiieiieiee ettt ettt ettt e st st e st e e s e e e taeensaeensaessnnraeeeeennnes 163

F.12 Option: -VDPMODES........oooioiiii ittt ettt seaeeenaee e 163
F 13 Option: “GRAPH........eoiiiie ettt et e e etre e e e e e s e eeeasaeees 163
F.14 Option: -FILE........ccooiiiiiiieeiie ettt esee ettt sveesev e e b e e aeestaeesnaae s ssssnaaeessnsnnes 164
F. 15 Option: -PRINT.....cccoiiiiiiiiieeiee ettt ettt st te e s teestaeetaeentae s e nnsaaeesennnnes 164
F.16 Option: ~CODBE.........ioiiiieiieieeit ettt ettt sttt et te e setesseenseenseenseensseaenes 164
F.17 Option: ~ASSEMBLER..........ooiii et 165
F.18 Option: -64SUPPORT (64-Column Editor)........ccceevuieririiiieniienieesieeriieeesvveee e 165
F.19 Option: -BSAVE... ..ottt sttt et et etae st e snteesasaesnseennnes 165
F.20 Option: =CRU....ccuiiiiiieie ettt ettt sttt et e bt e e ettt e e e s anbteeeeesaneees 165
Appendix G Assembly Source for CODEd WOTdS........c.ceieviiieiciieiiiiee et 166
APPendix H EITOT IMESSAZES.....cvvierieiiieiiieriieriteeiteettesteesreesereessseeeaeeeeessseessseessssaeesssssseeenns 171
Appendix [Contents of the TI Forth Diskette............cccooviviiiiiciiiiiiiiieeee e 173
Appendix J TT FOrth BUgs........oooiiiiiieie ettt et e 198
Appendix K Diskette Format Details...........cccvviieiiiiiiciiiiiiiie e eeiee et ereeesvee e svvvaeeee e 199
K.1 Volume Information BIOCK (VIB)......c.ccociiriiiriieiiieiie ettt ve e eeee e eenre e e 199
K.2 File Descriptor Index Record (FDIR).........cccceeviiiiiiiiiiienieecieerieeee et 200
K.3 File Descriptor Record (FDR)......cccoeiiiiiiiiiiee ettt 200
K.4 Comparison of TI Forth and TI File System Layouts on the Same Disk........................ 201
K.4.1 TI Forth System DISK.........ccciiiieiiiriiiiiieriierie et sreesre v e eireetaeessenseaasennes 202
K.4.2 TTI Forth Work DisK........ooeiiiiiiiiiiieiieeeeeeet et 204
Appendix L TI Forth System for Larger Disks.........cccooiiiiiiiiiiiiiiiee e 205
L.1 Larger System DiSK........cciiiiiiiiiiiiiciie ettt e s etre e e ve e e e e e saeensaeees 205
L.2 Larger WOrk DiSK........ccveiiiiiiiiieiiie sttt et e et esbeesenaeseveesneessaeaeenens 206
L.3 Updating Disk Utilities for Larger DiSKS...........ccceeeierriiriiieniienieenie e eieeeieeeniveee e 206

vil

viii

1 Introduction 1

1 Introduction

The Forth language was invented in 1969 by Charles Moore and has continually gained
acceptance. The last several years have shown a dramatic increase in this language’s following
due to the excellent compatibility between Forth and mini- and microcomputers. Forth is a
threaded interpretive language that occupies little memory, yet, maintains an execution speed
within a factor of two of assembly language for most applications. It has been used for such
diverse applications as radio telescope control to the creation of word processing systems. The
Forth Interest Group (FIG) is dedicated to the standardization and proliferation of the Forth
language. TI Forth is an extension of the fig-Forth dialect of the language. The fig-Forth
language is in the public domain. Nearly every currently available mini- and microcomputer has
a Forth system available on it, although some of these are not similar to the FIG version of the
language.

The address for the Forth Interest Group is:

Forth Interest Group
P. 0. BOX 1105
San Carlos, CA 94070

This document will cover some of the fundamentals of Forth and then show how the language has
been extended to provide easy access to the diverse features of the TI-99/4A Computer. The
novice Forth programmer is advised to seek additional information from such publications as:

Starting FORTH
by Leo Brodie
published by Prentice Hall

Using FORTH
by Forth Inc.

Invitation to FORTH
by Katzan
published by Petrocelli Books

In order to utilize all the capabilities of the TI-99/4A, it is necessary to understand its
architecture. It is recommended that the user who wants to use Forth for graphics, music, access
to Disk Manager functions or files have a working knowledge of this architecture. This
information is available in the Editor/Assembler Manual accompanying the Editor/Assembler
Command Module. All the capabilities addressed in that document are possible in Forth and
most have been provided by easy-to-use Forth words that are documented in this manual.

Forth is designed around a virtual machine with a stack architecture. There are two stacks: The
first is referred to variously as the data stack, parameter stack or stack. The second is the return
stack. The act of programming in Forth is the act of defining procedures called “words”, which
are defined in terms of other more basic words. The Forth programmer continues to do this until
a single word becomes the application desired. Since a Forth word must exist before it can be
referenced, a bottom up programming discipline is enforced. The language is structured and
contains no GOTO statements. Successful Forth programming is best achieved by designing top
down and programming bottom up.

2 1 Introduction

Bottom-up programming is inconvenient in most languages due to the difficulty in generating
drivers to adequately test each of the routines as they are created. This difficulty is so severe that
bottom-up programming is usually abandoned. In Forth, however, each routine can be tested
interactively from the console and it will execute identically to the environment of being called
by another routine. Words take their parameters from the stack and place the results on the stack.
To test a word, the programmer can type numbers at the console. These are put on the stack by
the Forth system. Typing the word to be tested causes it to be executed and when complete, the
stack contents can be examined. By writing only relatively small routines (words) all the
boundary conditions of the routine can easily be tested. Once the word is tested (debugged) it can
be used confidently in subsequent word definitions.

The Forth stack is 16 bits wide. [Editor’s Note: In Forth, a 16-bit value is known as a cell;
hence, the stack is one cell wide.] When multi-precision values are stored on the stack they are
always stored with the most significant part most accessible. The width of the return stack is
implementation dependent as it must contain addresses so that words can be nested to many
levels. The return stack in TI Forth is 16 bits wide.

Disk drives in TI Forth are numbered starting with 0 and are abbreviated with “DR” preceding
the drive number: DRO, DR1, etc. Other TI languages (TI BASIC, TI Extended BASIC, TI
Assembler, etc.) and software refer to disk drives starting with 1 and the abbreviation “DSK”
preceding the disk (drive) number: DSKI1, DSK2, etc. From this you can see that DRO and
DSKI1 refer to the same disk drive. When referring to the disk drives by device names, they will
always be DSK1, ..., such as part of a complete file reference, e.g., DSK1.MYFILE.

Keyboard key names in this document will be offset with “<>” and set in the italicized font of the
following examples: <ENTER>, <CTRL+V> <FCIN+4> <BREAK> and <CLEAR>. Incidentally, the
last three key names listed refer to the same key.

1.1 Editor’s Note

The source for this document was a series of sixteen files named A, B, C, ..., P in TI-Writer
format, which I had purchased from the MANNERS (Mid-Atlantic Ninety-NinERS) TI Users
Group shortly after TI put TI Forth into the public domain. I do not know who deserves the
credit for originating these files; but, it was always my understanding they came from TI and that
the printed document we all received with the TI Forth system was prepared in and printed from
TI Writer. However, the A — P files have differences from the printed document. I have
attempted to correct those differences; but, I have also taken the liberty of elaborating on the
original in an effort to make it easier to understand and to correct known bugs. I have added a
new chapter, “12 TI Forth Dictionary Entry Structure” and three new appendices, “J TI Forth
Bugs”, “K Diskette Format Details” and “L. TI Forth System for Larger Disks”.

Though I have been careful with my additional coding, as with anything else in this document,
you assume responsibility for any use you make of it. Please, feel free to contact me with
comments and corrections at lee@stewkitt.com.

—Lee Stewart
February, 2012
Silver Run, MD

1 Introduction

1.2 Starting Forth

To operate the TI Forth System, you must have the following equipment:

TI-99/4A Console

Monitor

Memory Expansion

Disk Controller

1 (or more) Disk Drives
Editor/Assembler Module
RS232 Interface (optional)
Printer (optional)

See the manuals accompanying each item for proper assembly of the TI-99/4A system.

To begin, power up the system. The TI Color-Bar screen should appear on your monitor. (If it
does not, power down and recheck all connections.) Press any key to continue. A new screen

will appear displaying a choice between TI BASIC and the Editor/Assembler.

select the Editor/Assembler.

On the next screen choose the LOAD AND RUN option. The computer will ask for a FILE NAME.
After placing your TI Forth System disk in the first drive, type “DSKI1.FORTH” and press
<ENTER>.

To use Forth,

The TI Forth welcome screen will display a list of load options (or elective blocks). Each option
loads all routines necessary to perform a particular group of tasks:

Load Option Loads Forth Words Necessary to: Chapter
-SYNONYMS Perform VDP reads and writes. Random number generators and 5
the disk formatting routine are also loaded.
-EDITOR Run the regular, 40-column TI Forth editor. 3
-COPY Copy Forth screens' and Forth disks. String store routines are also 5
loaded.
-DUMP Execute DUMP and VLIST. 5
-TRACE Trace the execution of Forth words. 5
-FLOAT Use floating-point arithmetic. 7
-VDPMODES Change display screen to any of the 6 available VDP modes. 6
-TEXT Change display screen to Text mode. 6
-GRAPH1 Change display screen to Graphics mode. 6

1

A Forth screen is also called a block and consists of 16 lines of 64 characters for a total of 1024 characters. When a

Forth screen is loaded from disk, 1024 characters are copied from the disk into a VDP RAM buffer.

explained in more detail later in this document.

This is

4 1.2 Starting Forth
Load Option Loads Forth Words Necessary to: Chapter
-MULTI Change display screen to Multicolor mode. 6
-GRAPH2 Change display screen to Graphics2 (bit-map) mode. 6
-SPLIT Change display screen to either of the two Split modes. 6
-FILE Utilize the file I/O capabilities of the TI-99/4A. 8
-PRINT Send output to an RS232 device. 8
-64SUPPORT Run the 64-column TI Forth editor. 3
-CODE Write assembly code in hexadecimal. 9
-ASSEMBLER Write routines in TI Forth Assembler. 9
-GRAPH Utilize the graphics capabilities of the TI-99/4A. 6
-BSAVE Save dictionary overlays to diskette. 11
-CRU Access the Forth equivalents of TI-Assembler mnemonics: LDCR, 11

STCR, SBO, SBZ and TB.

To load a particular package, simply type its name exactly as it appears in the list. For example,
to load the graphics package, type -GRAPH and press <ENTER>. You may load more than one

package at a time.

The list of load options may be displayed at any time by typing the word MENU and pressing
<ENTER>. See Appendix F for a detailed list of what each option loads.

2 Getting Started 5

2 Getting Started

This chapter will familiarize you with the most common words (instructions) in the Forth Interest
Group version of Forth (fig-Forth). The purpose is to permit those users that have at least an
elementary knowledge of some Forth dialect to easily begin to use TI Forth. Those with no Forth
experience should begin by reading a book such as Starting FORTH by Leo Brodie. Appendix C
is designed to be used with this particular text and lists differences between the Forth language
described in the book (poly-Forth) and TI Forth.

A word in Forth is any sequence of characters delimited by blanks or a carriage return (<ENTER>).
In this document, all Forth words will be set in a bold mono-spaced font that distinguishes the
digit ‘0’ from the capital letter ‘0’ and will always be followed by a blank, even when
punctuation such as a period or a comma follows. For example, DUP is such a Forth word and is
shown also at the end of this sentence to demonstrate this practice: DUP . This obviously looks
odd; but, this notation is necessary to avoid ambiguity when discussing Forth words because
many of them either end in or, in fact, are such punctuation marks themselves. For example, the
following, space-delimited character strings are all Forth words:

, " '; C, C! ;CODE ? ." I"
The following convention will be used when referring to the stack in Forth:
(n,ny---ny)

This diagram shows the stack contents before and after the execution of a word. In this case the
stack contains two values, n, and n,, before execution of a word. The execution is denoted by
“---” and the stack contents after execution is #,. The most accessible stack element is always on
the right. In this example, 7, is more accessible than n,. There may be values on the stack that are
less accessible than 7, but these are unaffected by the execution of the word in question.

The return stack may also be indicated beside the parameter stack (the stack) with a preceding
“R:”, especially when both stacks are involved, as follows:

(n---) (Ri--n)

In addition, the following symbols are used as operands for clarity:

SOME SYMBOLS USED IN THIS DOCUMENT

n,ny, .. 16-bit signed numbers

d d, .. 32-bit signed double numbers

u 16-bit unsigned number

ud 32-bit unsigned double number

addr, addr,, ... memory addresses

b 8-bit byte (in right half of word)

c 7-bit character (in right end of word)
flag Boolean flag (0 = false, non-0 = true)

| separates alternate results

2 Getting Started

2.1 Stack Manipulation

The following are the most common stack manipulation words:

DUP (n--—-nn)

DROP (n---)

SWAP (n, n,-—-nyn,)
OVER (n,ny,---n,n,n,)
ROT (n,nyny——-nynyn,)
-DuP (n--—-nnjn)

>R? (n--) (R:-—-n)
R> (-—-n) (Rin--)
R (--n) (Rin--—-n)

Duplicate top of stack

Discard top of stack

Exchange top two stack items

Make copy of second item on top
Rotate third item to top

Duplicate only if non-zero

Move top item on stack to return stack
Move top item on return stack to stack

Copy top item of return stack to stack

2.2 Arithmetic and Logical Operations

The following are the most common arithmetic and logical operations:

+ (n, n,-—-ny)

D+ (d d,---d)

- (nyny,---ny)

1+ (n,-—-n,)

2+ (n, -—-n,)

1- (ny -y

2- (n,--—-ny)

* (n,n,---ny)

/ (n, ny---ny)

MoD (n,n,-—--ny)

/MoD (n, n, --- rem quot)
*/MOD (n, n, ny --- rem quot)
*/ (n,nyny--—-n,)

Add

Add double precision numbers
Subtract (n, - n,)

Increment by 1

Increment by 2

Decrement by 1

Decrement by 2

Multiply

Divide (n,/ n,)

Modulo (remainder from n, / n,)
Divide giving remainder & quotient
n, * n, / n, with 32 bit intermediate

Like */MOD but giving quot only

2 >R and R> must be used with caution as they may interfere with the normal address stacking mechanism of Forth.
Make sure that each >R in your program has an R> to match it in the same word definition.

2 Getting Started 7

U* (ud, u, --- ud,) Unsigned * with double product

u/ (u, u, --- urem uquot) Unsigned / with remainder

MAX (nyny—-n,|ny) Maximum

MIN (nyny-— n;|ny) Minimum

ABS (n--1n|) Absolute value

DABS (d---1d|) Absolute value of 32-bit number
MINUS (n, -—-n,) Leave two’s complement

DMINUS (d,---d,) Leave two’s complement of 32-bits
AND (n,ny---ny) Bitwise logical AND n,

OR (n, ny---ny) Bitwise logical OR n,

XOR (n,ny---ny) Bitwise logical exclusive OR 7,

SwPB (n,--ny) Swap the bytes of n, producing n,

SRC (n, ny,---ny) Shift n, right circular n, bits giving n,
SRL (nyny,---ny) Shift n, right logical n, bits giving n,
SRA (n,n,---ny) Shift n, right arithmetic n, bits giving n,
SLA (n,ny,---ny) Shift n, left arithmetic n, bits giving n,

2.3 Comparison Operations

The following are the most common comparisons:

< (n,n,---flag) True if n, less than n, (signed)

= (n,n,---flag) True if top two numbers are equal
> (n, n,--—-flag) True if n, greater than n,

0< (n--flag) True if top number is negative

0= (n--—-flag) True if top number is 0 (i.e. NOT)
U< (u, u, - flag) Unsigned integer compare

2.4 Memory Access Operations

The following operations are used to inspect and modify memory locations anywhere in the
computer:

@ (addr ---n) Replace word address by its contents

! (naddr---) Store n at address (store a word)

2.4 Memory Access Operations

Ce

c!

?

+!
CMOVE
FILL
ERASE
BLANKS

Fetch the byte at addr
Store b at address (store a byte)
Print the contents of address

Add n to contents of address

(from_addr to_addr u ---) Block move u bytes.

(addr---b)
(b addr ---)
(addr ---)

(n addr ---)
(addrub ---)
(addru---)
(addru---)

2.5 Control Structures

Fill u bytes with b beginning at addr
Fill # bytes beginning at addr with Os
Fill u bytes with blanks beginning at addr

The following sets of words are used to implement control structures in Forth. They are used to
create all looping and conditional structures. These structures may be nested to any depth. If
they are nested improperly an error message will be generated at compile time and the word
definition will be aborted.

DO .. LOOP
DO (end+1 start ---)
I (--n)
3 (1)
LEAVE ()
DO .. +LOOP
DO (end+1 start ---)
+LOOP (1)
IF .. ENDIF
IF (flag—)
IF .. ELSE .. ENDIF
IF(flag—)

THEN
BEGIN .. UNTIL

DO sets up a loop with a loop counter. The stack
contains the first and final values of the loop counter.
The loop is executed at least once. LOOP causes a
return to the word following DO unless termination is
reached.

Used between DO and LOOP. Places value of loop
counter on stack.

Used when DO LOOPs are nested. Places value of next
outer loop counter on the stack.

Causes loop to terminate at next LOOP or +LOOP.

DO as above. +LOOP adds top stack value to loop
counter (index)

IF tests the top of stack and if non-zero (true), the
words between IF and ENDIF are executed. Otherwise,
they are skipped and execution resumes after ENDIF.

IF tests the top of stack and if non-zero (true), the
words between IF and ELSE are executed. If the top of
the stack is zero (false), the words between ELSE and
ENDIF are executed. Execution then continues after
ENDIF .

May be used as a synonym for ENDIF .

Loop which executes the words between BEGIN and

2 Getting Started

UNTIL (ﬂag —)

END
BEGIN .. AGAIN

BEGIN .. WHILE .. REPEAT
WHILE (ﬂag -—)

CASE
n, OF .. ENDOF
n, OF .. ENDOF
n, OF .. ENDOF
ENDCASE

CASE (1)

UNTIL until the top of stack when tested by UNTIL is
non-zero (true).

May be used as a synonym for UNTIL .

Creates an infinite loop continually re-executing the
words between BEGIN and AGAIN®.

Executes words between BEGIN and WHILE leaving
flag which is tested by WHILE. If flag is non-zero
(true), executes words between WHILE and REPEAT,
then jumps back to BEGIN. If flag is zero (false),
continues execution after the REPEAT .

Looks for a number (#,, n,, ..., n,) matching n. If there
is a match, executes the code between the OF .. ENDOF
set that immediately follows the matching number,
proceeding then to the code following ENDCASE . If
there is no match, the code after the last ENDOF is
executed, with ENDCASE dropping » from the stack.
Execution then continues after ENDCASE . Code after
the last ENDOF may use n, which is still available; but,
it must not consume n. Otherwise, ENDCASE will drop
whatever was under n, adversely affecting program
logic and possibly causing a stack underflow.

2.6 Input and Output to/from the Terminal

The most common type of terminal input is simply to enter a number at the terminal. This
number will be placed on the stack. The number which is input will be converted according to
the number base stored at BASE . BASE is also used during numeric output.

DECIMAL (-—)

HEX ()
BASE (--- addr)

(n—)
u. (1)
R (1,)
D (d—)
D.R (dn---)
R (—)

Sets the base to Decimal (Base 10)
Sets the base to Hexadecimal (Base 16)

System variable containing number base. To set some
base (e.g., Octal) use the following sequence: 8 BASE !

Print a signed number

Print an unsigned number

Print n, right-justified in field of width n,
Print double-precision number

Print double-precision number right-justified in field of
width n

Perform a Carriage Return/Line Feed

3 This loop may be exited by executing R> DROP one level below.

10

2.6 Input and Output to/from the Terminal

SPACE
SPACES
TYPE
COUNT
?TERMINAL
?KEY

KEY
EMIT
EXPECT
WORD

(addr --- addr+1n)
(---flag)

(= n)

(=c)
()

(addrn---)

()

2.7 Numeric Formatting

Type 1 space

Type n spaces

Print a string terminated by "

Type n characters from addr to terminal

Move string length from addr to stack

Test if <BREAK> (<CLEAR> on TI-99/4A) pressed

Read keyboard. If no key pressed, n = 0 else n = ASCII
keycode.

Wait for a keystroke and put its ASCII value on the stack.
Type character from stack to terminal
Read n characters (or until CR) from terminal to addr

Read one word from input stream delimited by ¢

Advanced numeric formatting control is possible with the following words:

NUMBER
<#

#

#S
SIGN
#>
HOLD

(addr---d)
(—)
(d,—d,)
(d--00)
(nd--d)
(d-—-addru)
(c-)

2.8 Disk-Related Words

The following words assist in maintaining source code on disk as well as implementing the Forth
virtual memory capability:

LIST
LOAD
BLOCK

B/BUF
BLK

Convert string at addr to d number

Start output string conversion

Convert next, least-significant digit of d, leaving d,
Convert all significant digits from right to left
Insert sign of »n into number

Terminate conversion, ready for TYPE

Insert ASCII character ¢ into string

(n--) List screen n to terminal

(n--) Compile or execute screen n

(n---addr) Leave address of block n, reading it from disk if
necessary

(-—-n) Constant giving disk block size in bytes

(---addr) User variable containing current block number

(contains 0 for terminal input)

2 Getting Started

11

SCR

UPDATE
FLUSH
EMPTY -BUFFERS

(--- addr)
(—)
(—)
()

2.9 Defining Words

The following are defining words. They are used not only to create new Forth words but in the
case of <BUILDS .. DOES> and ; CODE to create new defining words.

User variable containing screen number most
recently referenced by LIST or EDIT

Mark last buffer accessed as updated
Write all updated buffers to disk

Erase all buffers

XXX () Begin colon definition of xxx
; (--) End colon definition
VARIABLE xxx (n---) Create variable with initial value »
XXX (--- addr) Returns address when executed
CONSTANT xxx (n--) Create constant with value 7
XXX (—--n) Returns #» when executed
CODE xxx () Begin definition of assembly language primitive
named XXX
; CODE () Create new defining word with execution-time
code routine
<BUILDS .. DOES> Create new defining word using high level Forth.
DOES> (---addr)
2.10 Miscellaneous Words

The following words are relatively common but don’t fit well in any of the above categories:

CONTEXT

CURRENT

FORTH
DEFINITIONS
VOCABULARY xxx
(

FORGET xxx
ABORT

(--- addr)

(- addr)

Leave address of pointer to context vocabulary
(searched first)

Leave address of pointer to current vocabulary (new
definitions placed there)

Set CONTEXT to main Forth vocabulary

Set CURRENT to CONTEXT

Define new vocabulary

Begin comment. Terminated by)

Forget all definitions back to and including xxx

Error termination

12

2.10 Miscellaneous Words

'OXXX

HERE
PAD
IN
SP@
ALLOT

(--- addr)
(---addr)
(--- addr)
(--- addr)
(---addr)
(n—)

(n—)

Leave address of xxx . If compiling compile address.
(tick)

Leaves address of next unused byte in the dictionary
Leaves address of scratch area

User variable containing offset into input buffer
Leaves address of top stack item

Leave n-byte gap in dictionary

Compile 7 into the dictionary (comma)

Several Forth screens on the TI Forth System disk serve special purposes. Forth screen 0 may not
be modified because it is used by the disk Device Service Routine (DSR) to locate the object code
of the Forth kernel. Forth screen 3 is the BOOT screen (see BOOT in Appendix D), and Forth
screens 4 and 5 contain error messages used by several Forth words. Any disk placed in drive 0
(DRO) must contain a copy of Forth screens 4 and 5.

Many additional words are available in TI Forth. The user should consult the remaining chapters
in this manual as well as the glossary (Appendix D) and Appendix F for a complete description.
Most of these words are disk-resident and must be loaded by the user via the load options, which
are viewable by typing MENU , before they become available.

3 How to Use the Forth Editor 13

3 How to Use the Forth Editor

Words introduced in this chapter:

CLEAR FLUSH
ED@ TEXT
EDIT WHERE

In the Forth language, programs are divided into screens or blocks. Each Forth screen is 16 lines
of 64 characters and has a number associated with it. A TI-99/4A disk holds 90 Forth screens
(numbered 0 — 89), however, Forth screen 0 is special and is usually not used. A program may
occupy as many Forth screens as necessary.

You must read Chapter 5, “System Synonyms and Miscellaneous Utilities” and correctly format
your data disk before using the editor. Disks initialized by the disk manager are acceptable.
After loading Forth from the System disk, place the System disk in DR1 (2™ drive) and your
Forth disk in DRO (1% drive). It is necessary to copy Forth screens 4 and 5 from the Forth System
disk onto your Forth disk. These screens contain the error messages. If you have a two-drive
system, see the instructions for SCOPY and SMOVE in Chapter 5 for directions on how to do this.

If you have a one-drive system, however, this procedure is more complicated. The following
diagram illustrates the process used to copy parts of a Forth disk or an entire Forth disk with a
one drive system.
START: With original diskette in your drive and type:
FLUSH
LOOP: Type these lines:

scr BLOCK DROP UPDATE

up to 5 screens because the system
has 5 disk buffers

scr BLOCK DROP UPDATE

Switch to backup diskette and type:
FLUSH

Go back to LOOP if you need to copy more screens.

Now you are ready to begin editing your Forth disk.

CAUTION: Do not edit your System disk. It is a hybrid disk containing both TI-99/4A files and
Forth screens. Editing the disk may destroy its integrity!

14 3.1 Forth Screen Layout Caveat

3.1 Forth Screen Layout Caveat

As indicated above, Forth screens are laid out in 16 lines of 64 characters each. However, you
should be aware that the lines have no actual delimiters, i.e., there are no carriage-return or line-
feed characters at the end of a Forth-screen line. This means that one line wraps around to the
next line with no intervening white-space such that a word ending on one line will be
concatenated with a word that starts on the next line if there is no intervening space. This will
usually be nonsense to the system and generate an error message when the screen is loaded,
indicating that the unintended word has not been defined. Worse, it can result in an unintended
existing word such as -DUP instead of - DUP or +LOOP instead of + LOOP .

3.2 The Two TI Forth Editors

There are two Forth editors available on the TI Forth System disk. The first, which is loaded by
-EDITOR, operates in TEXT mode. It will be referred to as the 40-column editor®. Each Forth
screen is displayed in two halves (left and right) in normal sized characters.

The second, which is loaded by -64SUPPORT, operates in bit map mode. It allows you to view
an entire Forth screen at once; however, the characters are very small. It will be referred to as the
64-column editor.

Only one editor may be in memory at any time. Load whichever you prefer. Editing instructions
are identical for each.

3.3 Editing Instructions

Initialization fills each Forth screen with non-printable characters. These characters appear as
solid white squares on the terminal when you are using the 40-column editor and as unidentifiable
characters in the 64-column editor. A Forth screen must be filled with blanks before it can be
used. Typing a Forth screen number and CLEAR will fill a Forth screen with blanks.

1 CLEAR
will prepare Forth screen 1 for use by the editor.

You may begin writing on Forth screen 1 or on any Forth screen you wish. To bring a Forth
screen from the disk into the editor, type the Forth screen number followed by the word EDIT.

1 EDIT

The above instruction will bring the contents of Forth screen 1 into view. If you did not CLEAR
the screen before entering the editor, the screen will appear to be a block of undefined characters.
You must exit the editor temporarily and clear the screen on the disk before you can write to it.
To exit the editor, press the <BACK> (<FCTN+9>) function key on your keyboard. To clear the
screen, type the screen number and the word CLEAR .

To re-enter the editor, You do not have to type 1 EDIT again. A special Forth word,
ED@

4 The 40-column Forth editor may only be used when the computer is in TEXT mode (see Chapter 6). For example,
if the 40-column editor is loaded, don’t type EDIT while you are in SPLIT or SPLIT2 mode.

3 How to Use the Forth Editor 15

will return you to the last screen you were editing.

Upon entering the editor, the cursor is located in column 1 of line 0. It is customary to use line 0
for a comment describing the contents of that screen. Type a comment that says “PRACTICE
SCREEN” or something to that effect. Do not forget that all comments must begin with a “(
and end with a).

If you are using the 40-column editor, you have probably noticed that only 35 columns (of the 64
available columns) are visible on your terminal. To see the rest of the screen, type any characters
on line 1 until you reach the right margin. Now type a few more characters. Notice that the
screen is now displaying columns 30 — 64. Press <ENTER> to move to the beginning of the next
line.

The function keys on your keyboard each perform a special editing function.

key function

<FCTN+S>, (<) moves the cursor one position to the left.
<FCIN+D>, (—) moves the cursor one position to the right.
<FCTN+E>, (1) moves the cursor up one position.
<FCTN+X>, (|) moves the cursor down one position.

<DELETE> (<FCTN+1>) deletes the character on which the cursor is placed.

<INSERT> (<FCTN+2>) inserts a space to the left of the cursor moving the rest of the line right
one space. Characters may be lost off the end of the line.

<AID> (<FCTN+7>) erases from the cursor to the end of a line and saves the erased
characters in PAD. They may be placed at the beginning of a new line
by pressing <REDO>. <REDO> inserts a line just above where the cursor
is and places the contents of PAD there.

<BEGIN> (<FCIN+5>) 40-column editor: moves the cursor 28 positions to the right if the
cursor is on the left half of a Forth screen. Otherwise, it moves the
cursor 28 positions to the left. This key can be used to toggle between
the left and right half of a screen.

64-column editor: places the cursor in the upper left corner

<ERASE> (<FCTN+3>) are used in combination to pick up lines and move them elsewhere on

<REDO> (<FCTN+8>) the screen. <ERASE> picks up one line while erasing it from view.
<REDO> inserts this line just above the line on which the cursor is
placed. Both ERASE and <REDO> may be used repeatedly to erase
several lines from view or to insert multiple copies of a line.

<CTRL+8> will insert a blank line just above the line the cursor is on.
<CTRL+V> will tab forward by words.
<FCTN+l> will tab backwards by words.

5 The left parenthesis must be followed by at least 1 space. Press <ENTER>to move to the next line.

16 3.3 Editing Instructions

Experiment with these features until you feel you understand each of their functions. Erase the
line you typed from the screen and type a sample program for practice.

The Forth editor allows you to move forward or backward a screen without leaving the editor.
Pressing <CLEAR> (<FCTN+4>) will read in the succeeding screen. Pressing <PROCEED>
(<FCTN+6>) will read in the preceding screen.

If an error occurs during a LOAD command, typing the word WHERE will bring you back into the
editor and place the cursor at the exact point the error occurred.

The word FLUSH is used to force the disk buffers that contain data no longer consistent with the
copy on disk to be written to the disk. Use this word at the end of an editing session to be certain
your changes are written to the disk.

One last note about Forth screens: Though your word definitions can span more than one screen,
you should try to insure that any given word is defined on a single screen. This aids in clarity and
the good Forth-programming practice of keeping word definitions short.

4 Memory Maps 17

4 Memory Maps

The following diagrams illustrate the memory allocation in the TI-99/4A system. For more
detailed information, see the Editor/Assembler Manual.®

The VDP memory can be configured in many ways by the user. The TI Forth system provides
the ability to set up this memory for each of the VDP’s 4 modes of operation (Text, Graphics,
Multicolor And Graphics2). The allocation of memory for these modes is shown on the VDP
Memory Map. The first three modes are shown on the left half of the figure, the Graphics2 mode
on the right half. The area at 83C0h is used by the transcendental functions in all modes for a
rollout area. If transcendentals are used during Graphics2 (bit-map) mode, this portion of the
color table must be saved by the user before using the transcendental function and restored
afterward. Note that the VDP RAM is accessed from the 9900 only through a memory mapped
port and is not directly in the processor’s address space.

The only CPU RAM on a true 16-bit data bus is in the console at 8300h. Because this is the
fastest RAM in the system, the Forth Workspace and the most frequently executed code of the
interpreter are placed in this area to maximize the speed of the TI Forth system. The use of the
remainder of the RAM in this area is dictated by the TI-99/4A’s resident operating system.

The 32K byte memory expansion is divided into an 8K piece at 2000h and a 24K piece at AOOOh.
The small piece contains BIOS and utility support for TI Forth as well as 5K of disk buffers, the
Return Stack, and the User Variable area. The large piece of this RAM contains the dictionary,
the Parameter Stack and the Terminal Input Buffer.

4.1 VDP Memory Map

Address Address
0000h | Graphics & Multicolor Text Bit Map Color Table 1800h |0006h
Screen Image Table Mode
02FFh 300h bytes Screen
0300h | Sprite Attribute List Image
037Fh 86h g'fétg;
0380h | Color Table 20h
039Fh
03A0h | Unused 20h
03BFh
03COh | VDP Rollout Area 20h
03DFh
03EOh | Stack for VSPTR 80h
045Fh
0460h | PABS etc. 320h
077Fh

6 Hexadecimal (base 16) notation for integers in this manual is indicated when a string of 1 — 4 hexadecimal digits (@
—9,A—F) is followed by ‘h’. For example, 2F@Eh is a hexadecimal integer equivalent in value to decimal integer
12046 and Ah is decimal 10. The ‘h’ is never typed into the Forth terminal or on Forth screens. It is used in this
manual only to avoid confusion. The notation used in the Editor/Assembler Manual (use of a preceding >’ instead
of a trailing ‘h’) is only used in Chapter 9 for the conventional assembler examples, where it is required as input to
the Editor/Assembler module.

18

4.1 VDP Memory Map

Address

0780h
07FFh

0800h

OBFFh

0Co6h
OFFFh

1000h
13FFh

1400h

35D7h
35D8h

3FFFh

4.2 CPU Memory

Address

Sprite Motion Table 80h
Pattern Descriptor Table
Sprite Descriptor Table
0-127 400h
128 — 255 400h
Forth’s Disk Buffer
(4 sectors) 400h
Unused 21D8h
Bit Map Screen Image Table
306h
PABS etc. Coh
Stack for VSPTR 40h
Forth’s Disk Buffer (4 sectors)
400h
Bit Map Pattern Descriptor Table
Disk Buffering Region for 3 1860h
Simultaneous Disk Files - - -
A28h | Sprite Attribute List
80h

Sprite Attribute Descriptors (Optional
& based at 3800h) 15Ah

Disk Buffer Region for 2 Disk Files
626h

Address

17FFh

18060h
1AFFh

1BOOh
1BFFh

1CO6h
1FFFh

2000h
37FFh

3800h
387Fh

3886h
39D%h

39DAh
3FFFh

0000h | Console ROM
1FFFh

2000h | Low Memory Expansion
3FFFh Loader, Your Program, REF/DEF Table

4000h | Peripheral ROMs for DSRs

S5FFFh

6000h | Unavailable—ROM in Command Modules

7FFFh

8000h | Memory-mapped Devices for VDP, GROM, SOUND, SPEECH. CPU RAM at

9FFFh | 8300h - 83FFh

A0OOh | High Memory Expansion

FFFFh

Your Program

4 Memory Maps

19

4.3 CPU RAM Pad

Address’

8300h
831Fh

832Eh
8347h

834Ah
8351h

8356h
8357h

835Ch
8363h

83706h
8371h

8372h
8373h
8374h
8375h
8376h
8377h
8379h
837Ah
837Bh

837Ch

8380h
83A0h

83C0h
83C2h

83C4h
83D4h

83E0h
83FFh

Forth’s Workspace

Forth’s Inner Interpreter, etc.

FAC (Floating Point Accumulator)

Subroutine Pointer for DSRs

ARG (Floating Point Argument Register)

Highest Available Address of VDP RAM

Least Significant Byte of Data Stack Pointer

Least Significant Byte of Subroutine Stack Pointer

Keyboard Number to be Scanned

ASCII Keycode Detected by Scan Routine

Joystick Y-status

Joystick X-status

VDP Interrupt Timer

Number of Sprites that can be in Automotion

VDP Status Byte Bit 0° On during VDP Interrupt
Bit 1 On when 5 Sprites on a Line
Bit 2 On when Sprite Coincidence
Bits 3-7 Number of 5" Sprite on a Line

GPL Status Byte Bit0 High Bit
Bit 1 Greater than Bit
Bit2 On when Keystroke Detected (COND)
Bit3 Carry Bit
Bit4 Overflow Bit

Default Subroutine Stack Address

Default Data Stack Address

Random Number Seed (Begin Interrupt Workspace)
Flag Bit 0 Disable All of the Following

Bit 1 Disable Sprite Motion

Bit 2 Disable Auto Sound

Bit 3 Disable System Reset Key (Quit)
Link to DSR Hook
Contents of VDP Register 1

Begin GPL Workspace

7 Locations omitted are not used by Forth, but may be used by system routines.

8 Bit 0 = high order bit.

20

4.4 Low Memory Expansion

4.4 Low Memory Expansion

2000h
200Fh

2010h
3423h

3424h
397Fh

3980h
39FFh

3A00h
3CD9h

3CDAh

3FFFh

4.5 High Memory Expansion

A00Oh
BC7Fh

BC80h

FF9Fh

FFAOh
FFF1h

XML Vectors
0010h bytes
Disk Buffers
1414h
99/4 Support for Forth
055Ch
User Variable Area
0080h
Assembler Support
020Ah
1
1
Return Stack 0326h
Resident Forth Vocabulary
1C80h
User Dictionary Space
I
l
4320h

1
1

Parameter Stack

Terminal Input Buffer

0052h

5 System Synonyms and Miscellaneous Utilities 21

5 System Synonyms and Miscellane-
ous Utilities

Words introduced in this chapter:

LU MYSELF UNTRACE
.S RANDOMIZE VAND

: (traceable) RND VFILL
CLS RNDW VLIST
DISK-HEAD SCOPY VMBR
DSRLNK SEED VMBW
DTEST SMOVE VOR
DUMP TRACE VSBR
FORMAT -DISK TRIAD VSBW
FORTH-COPY TRIADS VWTR
GPLLNK TROFF VXOR
INDEX TRON VMLLNK

Several utilities are available to give you simple access to many resources of the TI-99/4A Home
Computer. These are defined as system synonyms.

Also included in this chapter are several disk utilities, special trace routines, random number
generators and a special routine that allows recursion.

The descriptions that follow in tabular form include the abbreviation “instr” for “instruction”.

5.1 System Synonyms

The system synonyms are loaded by typing the TI Forth MENU option, ~-SYNONYMS . These
utilities allow you to

* change the display;

* access the Device Service Routines for peripheral devices such as RS232 interfaces and
disk drives;

¢ link your program to GPL and Assembler routines; and

* perform operations on VDP memory locations.

22

5.1 System Synonyms

5.1.1

VDP RAM Read/Write

The first group of instructions enables you to read from and write to VDP RAM. Each of the
following Forth words implements the Editor/Assembler utility with the same name.

VSBW

VMBW

VSBR

VMBR

VFILL

(b vaddr ---)

Writes a single byte to VDP RAM. It requires 2 parameters on the stack: a byte b to be
written and a VDP address vaddr.

base byte vaddr instr
HEX A3 380 VSBW

The above line, when interpreted will change the base to hexadecimal, push A3h and
380h onto the stack and, when VSBW executes, places the value A3h into VDP address
380h.

(addr vaddr count ---)

Writes multiple bytes to VDP RAM. You must first place on the stack a source address
at which the bytes to be written are located. This must be followed by a VDP address (or
destination) and the number of bytes to be written.

base addr vaddr count instr
HEX PAD 808 4 VMBW

reads 4 bytes from PAD and writes them into VDP RAM beginning at 808h.
(vaddr --- byte)

Reads a single byte from VDP RAM and places it on the stack. A VDP address is the
only parameter required.

base vaddr instr
HEX 781 VSBR

places the contents of VDP address 781h on the stack.
(vaddr addr count ---')

Reads multiple bytes from VDP and places them at a specified address. You must
specify the VDP source address, a destination address and a byte count.

base vaddr addr count instr
HEX 300 PAD 20 VMBR

reads 32 bytes beginning at 300h and stores them into PAD.
(vaddr count byte ---)

If you wish to fill a group of consecutive VDP memory locations with a particular byte, a
VFILL instruction is available. You must specify a beginning VDP address, a count and
the byte you wish to write into each location.

5 System Synonyms and Miscellaneous Utilities 23

base vaddr count byte instr
HEX 300 20 0 VFILL

fills 32 (20h) locations, starting at 300h, with zeroes.

5.1.2 Extended Utilities: GPLLNK, XMLLNK AND DSRLNK

The next group of instructions allows you to implement the Editor/Assembler instructions
GPLLNK, XMLLNK and DSRLNK. To assist the user, the Forth instructions have the same
names as the Editor/Assembler utilities. Consult the Editor/Assembler Manual for more details.

GPLLNK (addr -)

Allows you to link your program to Graphics Programming Language (GPL) routines.
You must place on the stack the address of the GPL routine to which you wish to link.

base addr instr
HEX 16 GPLLNK

branches to the GPL routine located at 16h which loads the standard character set into
VDP RAM. It then returns to your program.

XMLLNK (addr -

Allows you to link a Forth program to a routine in ROM or to branch to a routine located
in the Memory Expansion unit. The instruction expects to find a ROM address on the
stack.

base addr instr
HEX 800 XMLLNK

accesses the Floating Point multiplication routine, located in ROM at 806h, and returns to
your program.

DSRLNK ()

Links a Forth program to any Device Service Routine (DSR) in ROM. Before this
instruction is used, a Peripheral Access Block (PAB) must be set up in VDP RAM. A
PAB contains information about the file to be accessed. See the Editor/Assembler
Manual and Chapter 8 of this manual for additional setup information. DSRLNK needs no
parameters on the stack.

The Editor/Assembler version of DSRLNK also allows linkage with a subroutine, but the
TI Forth version does not. If you need this functionality, you might define the following
word in decimal mode (BASE contains Ah):

: DSRLNK-SP 10 14 SYSTEM ;

See the Editor/Assembler Manual for details on this form of the call to the DSRLNK
utility. You will also need to consult the DSR’s specifications because this form of
access is at a lower level, with each subroutine often requiring information that differs
from the PAB set up for DSRLNK.

24 5.1 System Synonyms

5.1.3 VDP Write-Only Registers

The VDP contains 8 special write-only registers. In the Editor/Assembler, a VWTR instruction is
used to write values into these registers. The Forth word VWTR implements this instruction.

VWTR (b n--)

VWTR requires 2 parameters; a byte b to be written and a VDP register number 7.

base b n nstr
HEX F5 7 VWTR

The above instruction writes F5h into VDP write only register number 7. This particular
register controls the foreground and background colors in text mode. Executing the above
instruction will change the foreground color to white and the background color to light

blue.

5.1.4 VDP RAM Single-Byte Logical Operations

VAND , VOR and VXOR (b vaddr ---)

The Forth instructions VAND , VOR and VXOR greatly simplify the task of performing a
logical operation on a single byte in VDP RAM. Normally, 3 programming steps would
be required: a read from VDP RAM, an operation, and a write back into VDP RAM. The
above instructions get the job done in a single step. Each of these words requires 2
parameters, a byte b to be used as the second operand and the VDP address vaddr at
which to perform the operation. The result of the operation is placed back into vaddr.

base b vaddr instr
HEX FO 804 VAND

HEX FO 804 VOR
HEX FO 804 VXOR

Each of the above instructions reads the byte stored at 804h in VDP RAM, performs an
AND, OR or XOR on that byte and FOh, and places the result back into VDP RAM at

804h.

5.2 Disk Utilities

The TI Forth system was designed to be used with 90 screens per disk, i.e., with 90 KB, single-
sided, single-density (SSSD) disks. The system easily scales up to other disk formats®, except for
some of the disk utilities in this section: FORTH-COPY , DTEST , DISK-HEAD and FORMAT-DISK
are hardwired to use 90 KB disks. FORTH-COPY and DTEST require minor changes in the word

9 See Appendix K for a detailed discussion of disk format.

5 System Synonyms and Miscellaneous Utilities 25

definitions to change the 90-screen limit per disk (See Forth screen 39). Changing DISK-HEAD to
work is a lot more complicated! It requires low-level knowledge of the format of TI disks to
modify its definition (See Forth screen 40). FORMAT-DISK is part of the resident TI Forth
vocabulary, making it wiser to use other means of formatting disks rather than attempting to re-
write the definition for this word, but see Appendix L.

5.2.1 Disk Formatting Utility

FORMAT -DISK (n-—)

FORMAT -DISK is one of the system utilities loaded by the ~-SYNONYMS option. Any disk
that you wish to use with the Forth system must first be properly formatted. Place the
disk in a disk drive and place the number of that disk drive on the stack. TI Forth
numbers disk drives beginning with 0, therefore, if the new disk is in the first drive, put a
0 on the stack, etc. Next, type FORMAT-DISK .

0 FORMAT-DISK

will initialize the disk in DRO, thus preparing it for use by the Forth system. Disks
initialized by the TI Disk Manager are properly formatted and may be used.
FORMAT -DISK assumes 90 KB, SSSD TI disks.

5.2.2 Disk and Screen Copying Utilities

The disk and screen copying utilities are loaded by the -COPY option.
DISK-HEAD (--)

The TI Forth System disk, or any disk which contains a copy of Forth screens 0 thru 19 of
the System disk, may be copied with the TI Disk Manager. Any other disk may be
copied with the TI Disk Manager only after a special header has been written on it by the
TI Forth word DISK-HEAD . Please note that you must reset the value of the user variable
DISK _LO to zero before using DISK-HEAD . This word writes the volume name
“FORTH” on the disk and creates a single file named “SCREENS” of type
“DIS/FIX128”, i.e., display-type, 128-byte, fixed-length records. The file is set up to fill
all available space on the disk.

Any Forth disk (system or screens-only), which can be copied by the TI Disk Manager, can also
be accessed from TI BASIC. If you access a Forth disk that contains the Forth kernel, the only
file you should access is named “SYS-SCRNS” and record 0 of the file will be located on line 4
of screen 19. Records of length = 128 bytes will proceed thru record 565, which is located on
line 14 of screen 89. Record 566 then wraps to line 4 of screen 1. The file ends with record 623
located on line 6 of screen 8.

A Forth disk which does not contain the kernel may also be accessed by TI BASIC, but the
location of the records will be different. The file created by DISK-HEAD above, named
“SCREENS”, will begin on line 8 of screen 8 and continue thru record 651 located on line 14 of
screen 89. Record 652 begins on line 12 of screen 0 and the file ends with record 713 on line 6 of
screen 8.

26

5.2 Disk Utilities

FORTH-

SCOPY

SMOVE

COPY ()

To copy an entire 90 KB, SSSD Forth disk without using the TI Disk Manager, you must
place the new disk in DRO and the source disk in DR1. Typing FORTH-COPY will copy
the entire contents of the disk in DR1 onto the disk in DRO. Please note that you must
reset the value of the user variable DISK_LO to zero before using FORTH-COPY . This
will allow you to copy screen 0. This is accomplished by executing the following
instruction:

0 DISK_LO !

Using FORTH-COPY to copy Forth disks that have higher capacity than 90 KB, e.g., 180
KB or 360 KB, requires rewriting the definition of FORTH-COPY , as well as changing
DISK_SIZE and DISK_HI to accommodate the new disk sizes (see Appendix L).

(scr, scry ---)

You can copy the contents of a single Forth screen from one screen location to another
without destroying the original copy by using the SCOPY instruction. A source screen
number scr, and a destination screen number scr, must be specified.

base scr, scr, instr
DECIMAL 5 17 SCOPY

will write the contents of screen 5 over the contents of screen 17 without erasing screen 5.
The old contents of screen 17 will be destroyed.

(scr, scr, count ---)

The SMOVE instruction acts as a multiple SCOPY. It allows you to copy a group of Forth
screens with a single instruction. You must designate a beginning source screen, a
beginning destination screen, and the number of screens you wish to copy. When using
SMOVE, overlapping screen ranges may be used without user concern. The order of the
copy is adjusted so that the entire group of screens is moved intact.

base scr, scr, count instr
DECIMAL 11 36 7 SMOVE

will copy screens 11 - 17 over screens 36 - 42 without erasing screens 11 - 17.

Both the SCOPY and SMOVE instructions can be used to copy screens from one disk drive to
another. Assuming that DISK_SIZE (a user variable which contains the number of screens per
disk) is at its default value of 90, screens 0 - 89 are contained on the disk in DRO, screens 90 -179
are located on the disk in DR1, etc. Note: To copy screens from one disk drive to another, you
must reset the user variable DISK_HI. If you are using two disk drives, its value must be 180
(2 - 90). This is accomplished by executing the following instruction:

180 DISK HI !

Therefore, to copy screen 6 on DRO to screen 20 on DR1, you would type:

base scr, scr, instr

DECIMAL 6 110 SCoPY

5 System Synonyms and Miscellaneous Utilities 27

The SMOVE instruction is handled in the same manner. Simply use an offset of DISK_SIZE to
specify which disk drives you wish to copy to and from.

DTEST ()

If you have reason to suspect that a 90 KB, SSSD disk has a bad sector or is in some way
damaged, a non-destructive disk test is available. The DTEST instruction will attempt to
read each screen from the disk in DRO. Please note that you must reset the value of the
user variable DISK_LO to zero before using DTEST . A screen number will be displayed
on your monitor as each screen is read. If execution stops before screen 89 is reached, the
problem lies in the last screen displayed. To correct the problem, CLEAR that screen and
write to it again. This correction will work if the disk surface is intact and if the
formatting information has not been damaged. DTEST can be rewritten to accommodate
more capacious disks (see FORTH-COPY above and Appendix L).

5.3 Listing Utilities

There are three words on the TI Forth System disk (loaded by the -PRINT option) which make
listing information from a Forth disk very simple.

TRIAD (scr---)

The first, called TRIAD, requires a Forth screen number on the stack. When executed, it
will print to an RS232 device the three screens which contain the specified screen,
beginning with a screen number evenly divisible by three. Screens that contain non-
printable information will be skipped. If your RS232 printer is not on Port 1 and set at
9600 Baud, you must modify the word SWCH on your System disk.

TRIADS (scr, scry---)

The second instruction, called TRIADS, may be thought of as a multiple TRIAD. It
expects a beginning and an ending screen number on the stack. TRIADS performs as
many TRIADS as necessary to cover the specified range of screens.

INDEX (scr, scry ---)

The INDEX instruction allows you to list to your terminal line 0 (the comment line) of
each of a specified range of screens. INDEX expects a beginning and an ending screen
number on the stack. If you wish to temporarily stop the flow of output in order to read it
before it scrolls off the screen, simply press any key. Press any key to start up again.
Press <BREAK> (<CLEAR> or <FCTN+4>) to exit execution prematurely.

5.4 Debugging
5.4.1 Dump Information to Terminal

Choosing the =-DUMP option loads three useful TI Forth words for getting information for
debugging purposes.

28 5.4 Debugging

VLIST ()

The Forth word VLIST lists to your terminal the names of all words currently defined in
the CONTEXT vocabulary. This instruction requires no parameters and may be halted and
started again by pressing any key as with INDEX in the previous section.

DUMP (‘addr count ---')

The DUMP instruction allows you to list portions of memory to your terminal. DUMP
requires two parameters: an address and a byte count. For example,

base addr count nstr
HEX 2F26 100 DUMP

will list 256 (100h) bytes of memory beginning at address 2F26h to your terminal. Press
any key to temporarily stop execution in order to read the information before it scrolls off
the screen. Press any key to continue. To exit this routine permanently, press <BREAK>.

.S (=)

The Forth word .S allows you to view the parameter stack contents. It may be placed
inside a colon definition or executed directly from the keyboard. The word SP! should be
typed before executing a routine that contains .S . This will clear any garbage from the
stack. The | symbol is printed to represent the bottom of the stack. The number
appearing farthest from the | is the most accessible stack element.

5.4.2 Tracing Word Execution

A special set of instructions allows you to trace the execution of any colon definition. Executing
the TRACE instruction will cause all following colon definitions to be compiled in such a way that
they can be traced. In other words, the Forth word : takes on a new meaning. To stop compiling
under the TRACE option, type UNTRACE. When you have finished debugging, recompile the
routine under the UNTRACE option.

After instructions have been compiled under the TRACE option, you can trace their execution by
typing the word TRON before using the instruction. TRON activates the trace. If you wish to
execute the same instruction without the trace, type TROFF before using the instruction.

The actual trace will print the word being traced, along with the stack contents, each time the
word is encountered. This shows you what numbers are on the stack just before the traced word
is executed. The | symbol is used to represent the bottom of the stack. The number printed
closest to the | is the least accessible while the number farthest from the | is the most accessible
number on the stack. Here is a sample TRACE session:

DECIMAL

TRACE ok (compile next definition with TRACE option)

: CUBE DUP DUP * * ; (routine to be traced)

UNTRACE 0K (don’t compile next definition with TRACE option)
: TEST CUBE ROT CUBE ROT CUBE ; ok

TRON ok (want to execute with a TRACE)

56 7 TEST (put parameters on stack and execute TEST)

CUBE (TRACE begins)

| 567 (stack contents upon entering CUBE)

5 System Synonyms and Miscellaneous Utilities 29

CUBE

| 6 343 5 (stack contents upon entering CUBE)
CUBE
| 343 125 6 ok

5.4.3 Recursion

Normally, a Forth word cannot call itself before the definition has been compiled through to a ;
because the SMUDGE bit is set. To allow recursion, TI Forth includes the special word MYSELF .

MYSELF ()

The MYSELF instruction places the CFA of the word currently being compiled into its own
definition thus allowing a word to call itself.

The following, more complex, TRACE example uses a recursive factorial routine for illustration:

DECIMAL ok

TRACE ok (compile following definition under TRACE option)
: FACT DUP 1 > DUP 1 - MYSELF * ENDIF ; ok

UNTRACE ok

TRON ok

5 FACT (put parameter on stack and execute FACT)
FACT (TRACE begins)

| 5

FACT

| 54

FACT

| 543

FACT

| 5432

FACT

| 54321 ok

.S (check final stack contents)

| 120 ok

Each time the traced FACT routine calls itself, a TRACE is executed.

5.5 Random Numbers

Two different random number functions are available in TI Forth.
RND (n,-—-n,)

The first, RND , generates a positive random integer between 0 and a specified range #,.

base n, instr
DECIMAL 13 RND

will place on the stack an integer greater than or equal to 0 and less than 13.

30 5.5 Random Numbers
RNDW (--n)
The second random number function, RNDW , generates a random word (2 bytes). No
range is specified for RNDW .
RNDW
will place on the stack a number from 0 to FFFFh.
RANDOMIZE ()
To guarantee a different sequence of random numbers each time a program is run, the
RANDOMIZE instruction must be used. RANDOMIZE places an unknown seed into the
random number generator.
SEED (n--)

To place a known seed into the random number generator, the SEED instruction is used.
You must specify the seed value.

4 SEED

will place the value 4 into the random number generator seed location.

5.6 Miscellaneous Instructions

CLS

(addr)

This word is loaded by the -COPY option to be used by DISK-HEAD , but is available for
your use. It stores a string at a specified address, but does not store the character count,
which you would need to use TYPE . !" expects to find an address on the stack and must
be followed by a string terminated with a " . The following instruction places the string
“HOW ARE YOU?” at address PAD :

PAD !"™ HOW ARE Youz"
()

CLS is loaded by the ~-SYNONYMS option. Use this word to clear the display screen. CLS
clears the display screen by filling the screen image table with blanks. The screen image
table runs from SCRN_START to SCRN_END . CLS may be used inside a colon definition
or directly from the keyboard. CLS will not clear bit-map displays or sprites.

6 An Introduction to Graphics 31

6

An Introduction to Graphics

Words introduced in this chapter:

#MOTION GRAPHICS SPLIT2
BEEP GRAPHICS2 SPRCOL
CHAR HCHAR SPRDIST
CHARPAT HONK SPRDISTXY
COINC JOYST SPRGET
COINCALL LINE SPRITE
COINCXY MAGNIFY SPRPAT
COLOR MCHAR SPRPUT
DELALL MINIT SSDT
DELSPR MOTION TEXT
DOT MULTI UNDRAW
DRAW SCREEN VCHAR
DTOG SPCHAR

GCHAR SPLIT

6.1 Graphics Modes

The TI Home Computer possesses a broad range of graphics capabilities. Four screen modes are
available to the user:

1)

2)

3)

4)

Text Mode—Standard ASCII characters are available, and new characters may be
defined. All characters have the same foreground and background color. The screen is
40 columns by 24 lines. Text mode is used by the Forth 40-column screen editor.

Graphics Mode—Standard ASCII characters are available, and new characters may be
defined. Each character set may have its own foreground and background color.

Multicolor Mode—The screen is 64 columns by 48 rows. Each standard character
position is now 4 smaller boxes which can each have a different color. ASCII characters
are not available and new characters cannot be defined.

Bit-Map Mode (Graphics2)—This mode is available only on the TI-99/4A. Bit-map
mode allows you to set any pixel on the screen and to change its color within the limits
permitted by the 9918a. The screen is 256 columns by 192 rows. Graphics2 mode is
used by the 64-column editor.

Sprites (moving graphics) are available in all modes except text. The sprite automotion feature is
not available in graphics2, split, or split2 modes.

Two unique graphics modes have been created by using graphics2 mode in a non-standard way.
Split and split2 modes allow you to display text while creating bit-map graphics. Split mode sets
the top two thirds of the screen in graphics2 mode and places text on the last third. Split2 sets the

32 6.1 Graphics Modes

top one sixth of the screen as a text window and the rest in graphics2 mode. These modes
provide an interactive bit map graphics setting. That is, you can type bit map instructions and
watch them execute without changing modes.

You may place the computer in the above modes by executing one of the following instructions:
TEXT ()

GRAPHICS ()
MULTI ()
GRAPHICS2 (--)
SPLIT ()
SPLIT2 ()

6.2 Forth Graphics Words

Many Forth words have been defined to make graphics handling much easier for the user. As
many words are mentioned, an annotation will appear underneath them denoting which of the
modes they may be used in (T G M B). These denote text, graphics, multicolor and bit-mapped
(graphics2, split, split2) modes, respectively.

In several instruction examples, a base (HEX or DECIMAL) is specified. This does not mean that
you must be in a particular base in order to use the instruction. It merely illustrates that some
instructions are more easily written in hexadecimal than in decimal. It also avoids ambiguity.

6.3 Color Changes

The simplest graphics operations involve altering the color of the screen and of character sets.
There are 32 character sets (0 — 31), each containing 8 characters. For example, character set 0
consists of characters 0 — 7, character set 1 consists of characters 8 — 15, etc. Sixteen colors are
available on the TI Home Computer.

Hex Hex
Color Value Color Value
transparent 0 medium red 8
black 1 light red 9
medium green 2 dark yellow A
light green 3 light yellow B
dark blue 4 dark green C
light blue 5 magenta D
dark red 6 gray E
cyan 7 white F

6 An Introduction to Graphics 33

SCREEN (color ---)

The Forth word SCREEN following one of the above table values will change the screen
color to that value. The following example changes the screen to light yellow:

base color instr
HEX B SCREEN or
DECIMAL 11 SCREEN

G)

For text mode, the color of the foreground also needs to be set and should be different
from the background color so that text is visible. The foreground color must be in the
leftmost 4 bits of the byte passed to SCREEN. It is easier to compose the byte in
hexadecimal than decimal because each half of the byte is one hexadecimal digit. To set
the foreground to black (1) and the background to light yellow (Bh), the following
sequence will do the trick:

HEX 1B SCREEN

COLOR (fg bg charset ---)
The foreground and background colors of a character set may also be easily changed:
base fe bg charset instr
HEX 4 D 1A COLOR or
DECIMAL 4 13 26 COLOR
(G)

The above instruction will change character set 26 (characters 208 — 215) to have a
foreground color of dark blue and a background color of magenta.

6.4 Placing Characters on the Screen

HCHAR (col row count char ---)

To print a character anywhere on the screen and optionally repeat it horizontally, the
HCHAR instruction is used. You must specify a starting column and row position as well
as the number of repetitions and the ASCII code of the character you wish to print.

Keep in mind that both rows and columns are numbered from zero !!!
For example,

base col row count char instr
HEX A 11 5B 2A HCHAR or

DECIMAL 10 17 91 42 HCHAR
(TG)

34 6.4 Placing Characters on the Screen

will print a stream of 91 *s, starting at column 10 row 17, that will wrap from right to left
on the screen.

VCHAR (col row count char ---)

To print a vertical stream of characters, the word VCHAR is used in the same format as
HCHAR . These characters will wrap from the bottom of the screen to the top.

GCHAR (col row --- char)

The Forth word GCHAR will return on the stack the ASCII code of the character currently
at any position on the screen. If the above HCHAR instruction were executed and followed

by
base col row Instr
HEX F 11 GCHAR or
DECIMAL 15 17 GCHAR
(TG)

2Ah or 42 would be left on the stack.

6.5 Defining New Characters

Each character in graphics mode is 8 X 8 pixels in size. Each row makes up one byte of the 8
byte character definition. Each set bit (1) takes on the foreground color while the others remain
the background color.

In text mode, characters are defined in the same way, but only the left 6 bits of each row are
displayed on the screen.

For example,

«—Displayed in Text mode
«—Displayed in Graphics mode

01 2 3 4 5 6 7

Each Black square
represents a set bit.

N N R W N = O

6 An Introduction to Graphics 35

this character is defined:

3C66h DBE7h E7DBh 663Ch
Rows 0-1 2-3 4-5 6-7

CHAR (n, n, ny n, char ---)

The Forth word CHAR is used to create new characters. To assign the above pattern to
character number 123, you would type

base n, n, n, n, char instr

HEX 3C66 DBE7 E7DB 663C 7B CHAR or

DECIMAL 15426 56295 59355 26172 123 CHAR
(TG)

As you can see, it is more natural to use this instruction in HEX than in DECIMAL .
CHARPAT (char ---n,n,nyn,)

To define another character to look like character 65 (“A”), for example, you must first
find out what the pattern code for “A” is. To accomplish this, use the CHARPAT
instruction. This instruction leaves the character definition on the stack in the proper
order for a CHAR instruction. Study this line of code:

HEX 41 CHARPAT 7E CHAR or
DECIMAL 65 CHARPAT 126 CHAR
(TG)

The above instructions place on the stack the character pattern for “A” and assigns the
pattern to character 126. Now both character 65 and 126 have the same shape.

6.6 Sprites

Sprites are moving graphics that can be displayed on the screen independently and/or on top of
other characters. Thirty-two sprites are available.

6.6.1 Magnification

Sprites may be defined in 4 different sizes or magnifications:

Magnification ..
Description
Factor
0 Causes all sprites to be single size and unmagnified. Each

sprite is defined only by the character specified and occupies
one character position on the screen.

36 6.6 Sprites

Magnification . L.
Description
Factor
1 Causes all sprites to be single size and magnified. Each sprite

is defined only by the character specified, but this character
expands to fill 4 screen positions.

2 Causes all sprites to be double size and unmagnified. Each
sprite is defined by the character specified along with the next
3 characters. The first character number must be divisible by
4. This character becomes the upper left quarter of the sprite,
the next characters are the lower left, upper right, lower right
respectively. The sprite fills 4 screen positions.

3 Causes all sprites to be double size and magnified. Each sprite
is defined by 4 characters as above, but each character is
expanded to occupy 4 screen positions. The sprite fills 16
positions.

The default magnification is 0.
MAGNIFY (n--)
To alter sprite magnification, use the Forth word MAGNIFY .

n instr
2 MAGNIFY
(GM B)

will change all sprites to double size and unmagnified.

6.6.2 Sprite Initialization

SSDT (vaddr ---)

Before you begin defining sprites, you must execute the Forth word SSDT which roughly
translates, “set Sprite Descriptor Table.” Before executing this instruction, the computer
must be set into the VDP mode you wish to use with sprites. Recall that sprites are not
available in text mode.

You have a choice of overlapping your sprite character definitions with the standard
characters in the Pattern Descriptor Table (see VDP Memory Map in Chapter 4) or
moving the Sprite Descriptor Table elsewhere in memory. This move is highly
recommended to avoid confusion. 2000h is usually a good location, but any available 2K
(806h) boundary will do.

6 An Introduction to Graphics 37

6.6.3
SATR

base vaddr instr

HEX 2000 SSDT or

DECIMAL 8192 SSDT
(GMB)

will move the Sprite Descriptor Table to 2000h. Use the value 800h with the SSDT
instruction if you do not want to move the Descriptor Table.

Note: Whether or not you choose to move the table, you must execute this instruction
before you can use sprites in your program!!!

Using Sprites in Bit-Map Mode
(--- vaddr)

When using sprites in any of the bit-map modes (graphics2, split, split2), a little extra
work is required. After entering the desired VDP mode, the location of the Sprite
Attribute List must be changed to 3800h as follows.

HEX 3800 ' SATR !

The base address of the Sprite Descriptor Table must also be changed using the SSDT instruction.
It will be based at the same address as the Sprite Attribute List (3800h), but only a few character
numbers will be available for sprite patterns. SPCHAR may only be used to define patterns 16 —
58. (See following section for information on SPCHAR.)

6.6.4

3800h Sprite Attribute List
0080h

3880h Sprite Patterns 16-58
(based at 3806h)
39D%h 015Ah

Creating Sprites

The first task involved in creating sprites is to define the characters you will use to make them.
These definitions will be stored in the Sprite Descriptor Table mentioned in the above section.

SPCHAR (n, n, nyn, char ---)

A word identical in format to CHAR is used to store sprite character patterns. If you are
using a magnification factor of 2 or 3, do not forget that you must define 4 consecutive
characters for each sprite. In this case, the character # of the first character must be a
multiple of 4.

10 Bug fix: See Appendix J.

38 6.6 Sprites

base n, n, n, n, char instr

HEX OFOF 2424 FOF0 4242 0 SPCHAR or

DECIMAL 3855 9252 61680 8770 © SPCHAR
(GMB)

defines character 0 in the Sprite Descriptor Table. If your Pattern and Sprite Descriptor
Tables overlap, use character numbers below 127 with caution.
SPRITE (dotrow dotcol color char spr ---)

To define a sprite, you must specify the dot column and dot row at which its upper left
corner will be located, its color, a character number and a sprite number (0 - 31).

base dotcol dotrow color char spr instr

HEX 6B 4C 5 lo 1 SPRITE or

DECIMAL 107 76 5 16 1 SPRITE
(GMB)

defines sprite #1 to be located at column 107 and row 76, to be light blue and to begin
with character 16. Its size will depend on the magnification factor.

Once a sprite has been created, changing its pattern, color or location is trivial.
SPRPAT (char spr ---)

base char spr instr

HEX 14 1 SPRPAT or

DECIMAL 20 1 SPRPAT
(GMB)

will change the pattern of sprite #1 to character number 20.

SPRCOL (color spr ---)
base color spr instr
HEX c 2 SPRCOL or
DECIMAL 12 2 SPRCOL

(GM B)

will change the color of sprite #2 to dark green.
SPRPUT (dotcol dotrow spr ---)

6 An Introduction to Graphics 39

base dotcol dotrow spr instr

HEX 28 4F 1 SPRPUT or

DECIMAL 40 79 1 SPRPUT
(GM B)

will place sprite #1 at column 40 and row 79.

6.6.5 Sprite Automotion

In graphics or multicolor mode, sprites may be set in automotion. That is, having assigned them
horizontal and vertical velocities and set them in motion, they will continue moving with no
further instruction. Sprite automotion is only available in graphics and multicolor modes.

Velocities from 0 to 7Fh are positive velocities (down for vertical and right for horizontal), and
from FFh to 80h are taken as two’s complement negative velocities.

MOTION (xvel yvel spr ---)
base xvel yvel spr instr
HEX FC 6 1 MOTION or
DECIMAL -4 6 1 MOTION

(G M)

will assign sprite #1 a horizontal velocity of -4 and a vertical velocity of 6, but will not
actually set them into motion.

#MOTION (n---)

After you assign each sprite you want to use a velocity, you must execute the word
#MOTION to set the sprites in motion. #MOTION expects to find on the stack the highest
sprite number you are using + 1.

n nstr
6 #MOTION
(GM)

will set sprites #0 - #5 in motion.

n instr
0 #MOTION

will stop all sprite automotion, but motion will resume when another #MOTION
instruction is executed.

SPRGET (spr --- dotcol dotrow)

Once a sprite is in motion, you may wish to find out its horizontal and vertical position on
the screen at a given time.

40 6.6 Sprites

spr instr
2 SPRGET
(GMB)

will return on the stack the horizontal position of sprite #2 underneath the vertical
position. The sprite does not have to be in automotion to use this instruction.

6.6.6 Distance and Coincidences between Sprites

It is possible to determine the distance d between two sprites or between a sprite and a point on
the screen. This capability comes in handy when writing game programs. The actual value
returned by each of the Forth words, SPRDIST and SPRDISTXY, is &*. Distance d is the
hypotenuse of the right triangle formed by joining the line segments, d, x, — x, (the horizontal x-

distance difference in dot columns) and y, - y, (the vertical y-distance difference in dot rows).

The squared distance between the two sprites or the sprite and screen point is calculated by
squaring the x-distance difference and adding that to the square of the the y-distance difference,

e, d=(x,-x Y+, -y
SPRDIST (spr, spry---n)

Spr, spr, instr
2 4 SPRDIST
(GM B)

returns on the stack the square of the distance between sprite #2 and sprite #4.

SPRDISTXY (dotcol dotrow spr --- n)
base dotcol dotrow spr instr
DECIMAL 65 21 5 SPRDISTXY

(G M B)

returns the square of the distance between sprite #5 and the point (65,21).

A coincidence occurs when two sprites become positioned directly on top of one another. That
is, their upper left corners reside at the same point. Because this condition rarely occurs when
sprites are in automotion you can set a tolerance limit for coincidence detection. For example, a
tolerance of 3 would report a coincidence whenever the two sprites upper left corners came
within 3 dot positions of each other.

COINC (spr, spr, tol --- flag)
To find a coincidence between two sprites, the Forth word COINC is used.
spr, spr, tol instr
7 9 2 COINC
(GMB)

6 An Introduction to Graphics 41

will detect a coincidence between sprites #7 and #9 if their upper left corners passed
within 2 dot positions of each other. If a coincidence is found, a true flag is left on the
stack. Ifnot, a false flag is left.

COINCXY (dotcol dotrow spr tol --- flag)
Detecting a coincidence between a sprite and a point is similar.
base dotcol dotrow spr tol instr
DECIMAL 63 29 8 3 COINCXY
(GMB)

will detect a coincidence between sprite #8 and the point (63,29) with a tolerance of 3.
A true or false flag will again be left on the stack.

Both of the above instructions will detect a coincidence between non-visible parts of the sprites.
That is, you may not be able to see the coincidence.

COINCALL (---flag)

Another instruction is used to detect only visible coincidences. It, however, will not
detect coincidences between a select two sprites, but will return a true flag when any two
sprites collide. This instruction is COINCALL , and requires no arguments.

6.6.7 Deleting Sprites

As you might have noticed, sprites do not go away when you clear the rest of the screen with
CLS. Special instructions must be used to remove sprites from the display,

DELSPR (spr---)

spr instr
2 DELSPR
(GMB)

will remove sprite #2 from the screen by altering its description in the sprite Attribute
List (see VDP Memory Map in Chapter 4). It does not remove the velocity of sprite #2
from the Sprite Motion Table, nor does it alter the number of sprites the computer thinks
it is dealing with. In other words, if you were to redefine sprite #2, it would immediately
begin moving with whatever speed the old sprite #2 had.

DELALL (—)
DELALL

(GM B)

on the other hand, will remove all sprites from the screen, and from memory. DELALL

needs no parameters. Only the Sprite Descriptor Table will remain intact after this
instruction is executed.

42 6.7 Multicolor Graphics

6.7 Multicolor Graphics

Multicolor mode allows you to display kaleidoscopic graphics. Each character position on the
screen consists of 4 smaller squares which can each be a different color. A cluster of these
characters produces a kaleidoscope when the colors are changed rapidly.

MINIT ()

After entering multicolor mode, it is necessary to initialize the screen. The MINIT
instruction will accomplish this. It needs no parameters.

When in multicolor mode, the columns are numbered 0 — 63 and rows are numbered 0 —
47. A multicolor character is % the size of a standard character; therefore more of them
fit across and down the screen.

MCHAR (color col row ---)
To define a multicolor character, you must specify a color and a position (column, row)

and then execute the word MCHAR :

base color col row Instr
HEX B 1A 2C MCHAR or

DECIMAL 11 26 44 MCHAR

The above instruction will place a light yellow square at (26,44).

To change a character’s color, simply define a different color MCHAR with the same
position. In other words, cover the existing character.

6.8 Using Joysticks

JOYST (n, ---char nyny)

The JOYST instruction allows you to use joysticks in your Forth program. JOYST
requires only one parameter, viz., a keyboard number n,. The keyboard number tells the
computer which joystick or which side of the keyboard to scan for input. When keyboard
#1 is specified (n, = 1), both joystick #1 and the left side of the keyboard are scanned.
When keyboard #2 is specified (n, = 2), joystick #2 and the right side of the keyboard are
scanned. A “Key Pad” exists on each side of the keyboard and may be used in place of
joysticks. Map directions (N, S, E, W, NE, etc.) are used on the diagrams below to
indicate the corresponding display-screen directions (up, down, right, left, diagonally-up-
and-right, efc.) The following diagrams show which keys have which function.

6 An Introduction to Graphics 43

When Joystick #1 is specified, these ’ .’ .’ .’ .
keys on the left side of the keyboard are :-1; /m: /m\ /:Els\
valid == —— Ire-

The function of each key is indicated M-s‘

below the key and is followed by the
character code returned as char on the

stack. ’ ’ ’
/-\ /-\/
SW-15 S-0 SE- 14
When Joystick #2 is specified, these ’ " " " .
keys on the right side of the keyboard kF 18 INW 413\ /ﬂ\
are valid == me—— e
The function of each key is indicated .H/ !‘
below the key and is followed by the W 2 E3

character code returned as char on the SR, |
sk]’mllﬂ I
SW-15 S-0 SE-14

The JOYST instruction returns 3 numbers on the stack: a character code char on the
bottom of the stack, an x-joystick status n, and a y-joystick status n, on top of the stack.
The joystick positions are illustrated in the diagram that follows.

ECh equals decimal 252. The capital letters and ‘,” separated by ‘|’ indicate which keys
on the left and right side of the keyboard return these values. Note: The character value
of all fire buttons is 18 (12h).

If no key is pressed, the returned values will be a character code of 255 (FFh), and the
current x- and y-joystick positions. If a valid key is pressed, the character code of that
key will be returned along with its translated directional meaning (see diagram).

If an illegal key is pressed, three zeroes will be returned. If the fire button is pressed, a
character code of 18 (12h) along with two zeroes will be returned.

If you are using JOYST in a loop, do not forget to DROP or otherwise use the three
numbers left on the stack before calling JOYST again. A stack overflow will likely result
if you do not.

44 6.8 Using Joysticks

E|I
(0,4)
y
W|U
(FCh,4)
S|J D|K
(FCh,0) x (4,0)
(FCh,FCh) (4,FCh)
(6,FCh)
X|M

Joystick positions and values

6.9 Dot Graphics

High resolution (dot) graphics are available in graphics2, split and split2 modes. In graphics2
mode, it is possible to independently define each of the 49152 pixels on the screen. Split and
split2 modes allow you to define the upper two thirds or the lower five sixths of the pixels.

Three dot drawing modes are available:
DRAW ()

plots dots in the ‘on’ state.
UNDRAW (--)

plots dots in the ‘off” state.

6 An Introduction to Graphics 45

DTOG (--)
toggles dots between the ‘on’ and ‘off” state. If the dot is ‘on’, DTOG will turn it ‘off” and
vice versa.

DMODE (---addr)

The value of a variable called DMODE controls which drawing mode you are in. If DMODE
=0, you are in DRAW mode. If DMODE = 1, you are in UNDRAW mode, and if DMODE = 2,
you are in DTOG mode.

DOT (dotcol dotrow---)

To actually plot a dot on the screen, the DOT instruction is used. You must specify the dot
column and dot row of the pixel you wish to plot:

base dotcol dotrow instr

DECIMAL 34 12 DOT

will plot or unplot, depending on the value of DMODE , a dot at position (34,12).
DCOLOR (--- addr)

The default color for dots is white on transparent. The screen color default is black. To
alter the foreground and background color of the dots you plot, you must modify the
value of the variable DCOLOR . The value of DCOLOR should be two hexadecimal digits
where the first digit specifies the foreground color and the second specifies a background
color. Why do you need a background color for a dot? There is a simple explanation.
Each dot represents one bit of a byte in memory. Any bit in the byte that is turned ‘on’
displays the foreground color while the others take on the background color. Usually,
you would specify the background color to be transparent.

LINE (dotcol, dotrow, dotcol, dotrow, ---)

The Forth instruction LINE allows you to easily plot a line between any two points on the
bit-map portion of the screen. You must specify a dot column and a dot row for each of
the two points.

base dotcol, dotrow, dotcol, dotrow, instr

DECIMAL 23 12 56 78 LINE

The above instruction will plot a line from left to right between (23,12) and (56,78).
The line instruction calls DOT to plot each point therefore, you must preset DMODE and
DCOLOR before using LINE .

6.10 Special Sounds

Two special sounds can be used to enhance your graphics application. To use these noises in
your program, simply type the name of the sound you want to hear. No parameters are needed.

BEEP (--)
The first is called BEEP and produces a pleasant high pitched sound.

46 6.10 Special Sounds

HONK ()

The other, called HONK , produces a less pleasant low tone.

6.11 Constants and Variables Used in Graphics
Programming

The following constants and variables are defined in the graphics routines. The value of
COLTAB, PDT, SATR, SMTN and SPDTAB must be changed if you are operating in graphics2, split
or split2 mode. See the VDP Memory Map in Chapter 4.

name type description default
COLTAB constant VDP address of Color Table 386h
DMODE variable Dot graphics drawing mode)
PDT constant ~ VDP address of Pattern Descriptor Table 800h
SATR constant ~ VDP address of Sprite Attribute Table 300h
SMTN constant ~ VDP address of Sprite Motion Table 780h

SPDTAB constant ~ VDP address of Sprite Descriptor Table 800h

7 The Floating Point Support Package 47

7 The Floating Point Support Package

Words introduced in this chapter:

>ARG FO< FUML
>F FO= FOVER
>FAC F< FSUB
?FLERR F= FSWAP
ATN F> INT
cos F@ LOG
EXP FAC->S PI

F! FAC> S->F
F* FAC>ARG S->FAC
F+ FADD SETFL
F- FDIV SIN
F->S FDUP SQR
F. FF. TAN
F.R FF.R VAL
F/ FLERR

The floating point package is designed to make it easy to use the Radix 100 floating point
package available in ROM in the TI-99/4A console. Normal use of these routines does not
require the user to understand the implementation. For those users desiring to improve the
efficiency of these operations by optimizing the code for this implementation, the details are
given in the latter portion of this chapter.

7.1 Floating Point Stack Manipulation

The floating point numbers in the TI-99/4A occupy 4 16-bit words'' (8 bytes) each. In order to
simplify stack manipulations with these numbers, the following stack manipulation words are
presented:

FDUP (f--f1)
FDROP (f--)

FOVER KL=/ AR
FSWAP i =6)

11 This use of the term “word” here is different from a Forth word. It refers to the largest memory unit the TMS9900
CPU can address. It is equal to 2 bytes or 16 bits.

48 7.2 Floating Point Fetch and Store

7.2 Floating Point Fetch and Store

Floating point numbers can be stored and fetched by using
F! (faddr---)
F@ (addr ---f)

The user must ensure that adequate storage is allocated for these numbers (e.g., @ VARIABLE
nnnn 6 ALLOT could be used. VARIABLE allots 2 bytes.)

7.3 Floating Point Conversion Words

The following words put floating point numbers on the stack so that the above operations can be
used:

S->F (n—f)

A 16-bit number can be converted to floating point by using S->F . It functions by
replacing the 16-bit number on the stack by a floating point number of equal value.

F->S (f-—-n)

This is the inverse of S->F . It starts with a floating point number on the stack and leaves
a 16-bit integer.

7.4 Floating Point Number Entry

In addition, the word

>F (/)

can be used from the console or in a colon definition to convert a string of characters to a
floating point number. Note that >F is independent of the current value of BASE .

The string is always terminated by a blank or carriage return. The following are
examples:

>F 123 or 123 S->F
>F 123.46

>F -123.46

>F 1.23E-006

>F 9.88E+091

>F 0 or 0 S->F

7.5 Floating Point Arithmetic

Floating point arithmetic can now be performed on the stack just as it is with integers. The four
arithmetic operators are:

F+ (L fhi—f)

7 The Floating Point Support Package 49

F-
F*
F/
PI

fi L—13) Puts on the stack the result (f;) of f; — f,.
fi 1) Puts on the stack the result (f;) of f; X f;.
fi L—15) Puts on the stack the result (f;) of f, / £,.
(1)

The word PI is a constant available to place 3.141592653590 on the stack.

7.6 Floating Point Comparison Words

Comparisons between floating point numbers and testing against zero are provided by the
following words. They are used just like their 16-bit counterparts except that the numbers tested
are floating point.

FO<
FO=
F>
F=
F<

(f--flag) flag is true if f on stack is negative
(f---flag) flag is true if f on stack is zero

(N1 fo - flag) flag is true if f, > f,

(N fo---flag) fag is true if f, = f,

(f; fo-—--flag) flag is true if f, < f,

7.7 Formatting and Printing Floating Point Numbers

F.

F.R

(f---)

The word F. is used to print the floating point number on the top of the stack to the
terminal. The format used is identical to that used by BASIC:

1) Integers representable exactly are printed without a trailing decimal,
2) Fixed point format is used for numbers in range and

3) Exponential format (scientific notation) is used for very large or very small
numbers.

(fn---)

If the floating point numbers are to be output in a table the word F.R can be used to right
justify it in a field of width n where n is a 16-bit word added to the top of the stack for
this purpose.

Two additional words are used for more specific formatting:

FF.

FF.R

(f nyny-—)

FF. requires two integers on the stack above the floating point number f. They control
the maximum number of digits (#,) to convert and the number of digits (»,) following the

decimal point.
(f nynyny---)

FF.R adds the printing field width (n,), in which the output is right justified. As for
FF. , n, is the maximum number of digits to convert and 7, is the number of digits
following the decimal point.

50 7.8 Transcendental Functions

7.8 Transcendental Functions

The following transcendental functions are also available:

INT (fi 1) Returns largest integer not larger than input
~ (fi 1) £, is f; raised to the f, power

SQR (fi 1) £, is the square root of f,

EXP (fi 1) f,is e (2.71828...) raised to the f, power
LOG (fi 1) £, is the natural log of £,

cos (fi 1) £, is the cosine of £, (in radians)

SIN (fi——1) £, is the sin of f; (in radians)

TAN (fi 1) £, is the tangent of /| (in radians)

ATN (fi 1) £, is the arctangent (in radians) of f,

Caution! A conflict exists when using transcendentals and floating point prints while in
bit-map mode. The contents of the VDP Rollout Area (3C0h — 3DFh) must be saved
before transcendentals or floating point prints are executed and restored upon completion.

Note: The transcendentals also use the area known as the stack for the value stack
pointer, VSPTR (See VDP Memory Map in Chapter 4). This area is pointed to by 836Eh
(VSPTR).

7.9 Interface to the Floating Point Routines

The remainder of this chapter will address the interface to the floating point routines in the
console in greater detail and is not necessary for most floating point operations.

The floating point routines use two memory locations in the console CPU RAM as floating point
registers. They are called FAC (for floating point accumulator) and ARG (for argument register).
Forth has two constants with these same names that can be used to access these locations directly:

FAC (--- addr) constant that puts the address of FAC on the stack.
ARG (--- addr) constant that puts the address of ARG on the stack.
The words >FAC and >ARG move floating point data from the stack to these locations.
>FAC (f--) moves fto FAC.

>ARG (f--) moves fto ARG.

FAC> (1) is used to move data from FAC to the stack.

SETFL (fi L)

Each of the binary floating point operations requires that two numbers be moved from the
stack to FAC and ARG. SETFL does this by calling >FAC and >ARG to place f, in FAC

and f; in ARG.

7 The Floating Point Support Package 51

The words FADD , FSUB , FMUL and FDIV each use the values in FAC and ARG and leave the
result in FAC as they perform the floating point arithmetic functions.

FADD ()
FSUB ()
FMUL ()
FDIV ()

When conversion from 16-bit integer to floating point is performed by S->F , it is done in the
FAC. If the user does not desire the result to be copied from FAC to the stack, the word S->FAC
can be used instead:

S->FAC (n-—)

S->FAC moves a 16-bit integer (n) to the FAC, where it converts it to a floating point
number.

Several miscellaneous words include:

FAC->S (--n) converts the contents of FAC to a 16-bit integer on the stack.
FAC>ARG () copies the contents of FAC to ARG.
VAL ()

VAL converts a string at PAD to a floating point number in FAC. VAL expects the first
byte at PAD to be the character count. There must not be any leading spaces in the
string.

FLERR (—n)

FLERR is used to fetch the contents of the floating point error register (8354h) to the
stack. See the Editor/Assembler Manual for more information.

?FLERR (—)

?FLERR issues an appropriate error message if the last floating point operation resulted in
an error.

52 8 Access to File I/O Using TI-99/4A Device Service Routines

8 Access to File I/0 Using TI-99/4A
Device Service Routines

Words introduced in this chapter:

APPND I/0MD REC-NO
CHAR-CNT! INPT RLTV
CHAR-CNT@ INTRNL RSTR
CHK-STAT LD SCRTCH*?
CLR-STAT N-LEN! SET-PAB
CLSE OPN SQNTL
DLT OUTPT STAT
DOI/0 PAB-ADDR SV
DSPLY PAB-BUF SWCH
F-D" PAB-VBUF UNSWCH
FILE PUT-FLAG UPDT
FXD RD VRBL
GET-FLAG REC-LEN WRT

This chapter will explain the means by which different types of data files native to the TI-99/4A
are accessed with TI Forth. To further illustrate the material, two commented examples have
been included in this chapter. The first (§ 8.6) demonstrates the use of a relative disk file and the
second (§ 8.7) a sequential RS232 file.

A group of Forth words has been included in this version of TI Forth to permit a Forth program to
reference common data with BASIC or Assembly Language programs. These words implement
the file system described in the 7/ BASIC Manual and the Editor/Assembler Manual. Note that
the diskette on which you received your TI Forth system is not a standard diskette and that you
should perform file I/O to/from disks only if they are initialized by the Disk Manager and do not
contain Forth screens.

8.1 The Peripheral Access Block (PAB)

Before any file access can be achieved, a Peripheral Access Block (PAB) must be set up that
describes the device and file to be accessed. Most of the words in this chapter are designed to
make manipulation of the PAB as easy as possible.

A PAB consists of 10 bytes of VDP RAM plus as many bytes as the device name to be accessed.
An area of VDP RAM has been reserved for this purpose (consult the VDP Memory Map in
Chapter 4). The user variable PABS points to the beginning of this region. Do not use the first 2
bytes of this area as they are used by Forth in its Forth-style disk access. Adequate space is
provided for many PABs in this area. More information on the details of a PAB are available in

12 SCRTCH , though defined in TI Forth, was never implemented in any DSR for the TI-99/4A. Its use will result in a
file I/O error.

8 Access to File I/O Using TI-99/4A Device Service Routines 53

the Editor/Assembler Manual, page 293ff. The following diagram illustrates the structure of a
PAB:

Byte 0 Byte 1
I/0 Opcode Flag/Status

Bytes 2 & 3
Data Buffer Address in VDP

Byte 4 Byte 5

Logical Record Length Character Count
Bytes 6 & 7

Record Number
Byte 8 Byte 9

Screen Offset Name Length
Byte 10+

File Descriptor

8.2 File Setup and I/O Variables

All Device Service Routines (DSRs) on the TI-99/4A expect to perform data transfers to/from the
VDP RAM. Since Forth is using CPU RAM it means that the data will be moved twice in the
process of reading or writing a file. Three variables are defined in the file I/O words to keep track
of these memory areas.

PAB-ADDR (--- vaddr)
Points into VDP RAM to first byte of the PAB.
PAB-BUF (--- addr)

Points into CPU RAM to first byte in Forth’s memory where allocation has been made
for this buffer.

PAB-VBUF (--- vaddr)

Points into VDP RAM to the first byte of a region of adequate length to store data
temporally while it is transferred between the file and Forth. The area of VDP RAM
which is used for this purpose is labeled “Unused” on the VDP Memory Map in Chapter
4. If working in bit-map mode, be cautious where PAB-VBUF is placed.

FILE (vaddr, addr vaddr, ---)

The word FILE is a defining word and permits you to create a word which is the name by
which the file will be known. A decision must be made as to the location of each of the
buffers before the word FILE may be used. The values to be used for those locations are

54 8.2 File Setup and I/0O Variables

contained in the above variables and are placed on the stack in the above order followed
by FILE and the file name (not necessarily the device name). For example:

Using The Defining Word, FILE
0 VARIABLE MY-BUF 78 ALLOT (Create 80 character buffer)

PABS @ 10 + (PAB starts 10 bytes into region for
PABS: PAB-ADDR)

MY - BUF (Location of PAB-BUF)

6000 (A free area for PAB-VBUF)

FILE JOE (Whenever the word JOE is executed,
the file 1/O variables will be set as
defined here.)

JOE (Use the word before using any other
file I/O words)

SET-PAB ()

The word that creates the PAB skeleton is SET-PAB . It creates a PAB at the address
shown in PAB-ADDR and zeroes it except for the buffer address slot. Into this it places the
contents of the variable PAB-VBUF .

8.3 File Attribute Words

Files on the TI-99/4A have various characteristics that are indicated by keywords. The following
table describes the available options. The example in the back of the chapter will be helpful in
that it shows at what time in the procedure these words are used. Use only the attributes which
apply to your file and ignore the others. Remember, if you are using multiple files, then the file
referenced is the file whose name word was most recently executed.

Options From

Attribute Type [BASIC Forth Description

File Type SEQUENTIAL SQNTL® Records may only be accessed in
sequential order

RELATIVE RLTV Accessed in sequential or random order.
Records must be of fixed length

Record Type [FIXED FXD" All records in the file are the same length
VARIABLE VRBL Records in the same file may have
different lengths
Data Type DISPLAY DSPLY" File contains printable or displayable
characters

INTERNAL INTRNL File contains data in machine or binary
format

8 Access to File I/O Using TI-99/4A Device Service Routines 55

Options From
Attribute Type [BASIC Forth Description
Mode of INPUT INPT File contents can be read from but not
Operation written to
OUTPUT OUTPT File contents can be written to but not
read from
UPDATE uPDT" File contents can be written to and read
from
APPEND APPND Data may be added to end of file but
cannot be read

Default if attribute is not specified

REC-LEN (b--)

To specify the record length for a file, the desired length byte » should be on the stack
when the word REC-LEN is executed. The length will be placed in the current PAB.

F-D" ()

Every file must have a name to specify the device and file to be accessed. This is
performed with the F-D" word which enters the File Description in the PAB. F-D" must
be followed by a string describing the file and terminated by a " mark. Here are a few
examples of the use of F-D" :

F-D" RS232.BA=9600"
F-D" DSK2.FILE-ABC"

8.4 Words that Perform File I/0

The actual 1/O operations are performed by the following words. The table gives the usual
BASIC keyword associated with the corresponding Forth word. Here, as in the previous table,
the Forth words are spelled differently than the BASIC words to avoid conflict with one or more
existing Forth words.

From BASIC From Forth DSR Opcode
OPEN OPN 0
CLOSE CLSE 1
READ RD 2
WRITE WRT 3
RESTORE RSTR 4
LOAD LD 5
SAVE SV 6

56

8.4 Words that Perform File [/O

From BASIC From Forth DSR Opcode
DELETE DLT 7
SCRATCH SCRTCH*? 8
STATUS STAT 9
OPN (--)
opens the file specified by the currently selected PAB, which is pointed to by PAB-ADDR .
CLSE (--)
closes the file whose PAB is pointed to by PAB-ADDR .
REC-NO (n--)
Before using the RD , WRT and SCRTCH instructions with a relative file, you must place
the desired record number 7 into the PAB. To do this, place the record number #n on the
stack and execute the word REC-NO . If your file is Sequential, you need not do this.
RD (--n)
The RD instruction will transfer the contents of the next record from the current file into
your PAB-BUF and leave a character count # on the stack.
WRT (n--)
takes a character count n from the stack and moves that number of characters from the
PAB-BUF to the current file.
RSTR (n--)

takes a record number n from the stack and repositions (restores) a relative file to that
record for the next access.

SCRTCH?S (n---)

LD

SV

DLT

is used to remove a relative record. It requires a record number 7 on the stack.

(1)

used to load a program file of maximum # bytes into VDP RAM at the address specified
in PAB-VBUF . OPN and CLSE need not be used.

(1)

used to save n bytes of a program file from VDP RAM at the address specified in
PAB-VBUF . OPN and CLSE need not be used.

(=)
is used to delete the file whose PAB is pointed to by PAB-ADDR .

13 See footnote 12, page 52.

14 idem

15 idem

8 Access to File I/O Using TI-99/4A Device Service Routines 57

STAT (—b)

returns the status byte b (labeled “screen offset”) of the current device/file from the PAB
pointed to by PAB-ADDR. The table below, excerpted from the Editor/Assembler
Manual, p. 298, shows the meaning of each bit of the status byte:

Status Byte Information When Value is

Bit 1 0

0 | File does not exist. File exists. If device is a printer or
similar, always 0.

1 | Protected file. Unprotected file.

2 _ Reserved for future use. Always 0.

3 | INTERNAL data type. DISPLAY data type or program file.

4 | Program file. Data file.

5 | VARIABLE record length. FIXED record length.

6 | At physical end of peripheral. No | Not at physical end of peripheral.

more data can be written. Always 0 when file not open.

7 | End of file (EOF). Can be written if | Not EOF. Always 0 when file not
open in APPEND, OUTPUT or | open.

UPDATE modes. Reading will
cause an error.

The words that follow are available for the advanced user and their utility can be worked out by
examining their definitions on Forth screen 68ff. They are lower-level words that are used in the
definitions of the above file I/O words.

GET-FLAG (—b)

retrieves to the stack the flag/status byte b from the current PAB. See table below for the
meaning of each bit:

Flag/Status Byte of PAB (Byte 1)

Bits Contents Meaning
0-2 Error Code 0 =no error. Error codes are decoded in table below.
3 Record Type 0 = fixed-length records; 1 = variable-length records.
4 Data Type 0 =DISPLAY; 1 =INTERNAL.
5-6 Mode of Operation 0 = UPDATE; 1 = OUTPUT,; 2 = INPUT; 3 =
APPEND.

7 File Type 0 = sequential file; 1 = relative file.

58 8.4 Words that Perform File [/O

Error Codes in Bits 0-2 of Flag/Status Byte of PAB

Error
Code Meaning

0 No error unless bit 2 of status byte at address 837Ch is set (then, bad
device name).

1 Device is write protected.
2 Bad OPEN attribute such as incorrect file type, incorrect record length,
incorrect I/O mode or no records in a relative record file.

3 [Illegal operation; i.e., an operation not supported on the peripheral or a
conflict with the OPEN attributes.

4 Out of table or buffer space on the device.
Attempt to read past the end of file. When this error occurs, the file is
closed. Also given for non-extant records in a relative record file.

6 Device error. Covers all hard device errors such as parity and bad
medium errors.

7 File error such as program/data file mismatch, non-existing file opened
in INPUT mode, etc.

PUT-FLAG (b---)

writes the flag/status byte b on the stack to the current PAB. See table after GET-FLAG
for the meaning of each bit.

CLR-STAT (--)
clears the error code in bits 0-2 of the flag/status byte of the current PAB.
CHK-STAT (--)

checks the error code in bits 0-2 of the flag/status byte of the current PAB. If it is not 0,
an appropriate error message is printed.

I/0MD (—b)

gets the flag/status byte b of the current PAB, clears the /O mode bits (5 & 6) and leaves
it on the stack in preparation for setting the I/O mode with an I/O word.

CHAR-CNT! (n--)
stores the character count 7 in the current PAB prior to a write operation. CHAR-CNT! is
used by WRT .

CHAR-CNT@ (-—-n)
retrieves the character count n from the current PAB of the last read operation. It is used
by RD .

N-LEN! (b--)

stores in the current PAB the length byte b of the file descriptor associated with the
current PAB. For “DSK1.MYFILE”, this would be 11.

8 Access to File I/O Using TI-99/4A Device Service Routines 59

DOI/0 (n-—)

executes the DSRLNK word with the I/O opcode n on the stack. The current PAB must be
updated with the information required by opcode n before executing DOI/0 . See Section
18.2.1 of the Editor/Assembler Manual for details or consult the definitions on Forth
screen 68ff. of the I/O words, OPN, CLSE , RD, WRT , RSTR, SCRTCH¢, LD, SV, DLT
and STAT , all of which use this low-level word in their definitions.

Examples of file I/O in use are available on Forth screen 72ff., which defines the Alternate 1/O
capabilities for printing to the RS232 interface.

8.5 Alternate Input and Output

When using alternate input or output devices, the 1-byte buffer in VDP memory must be the byte
immediately preceding the PAB for ALTIN or ALTOUT .

The words
SWCH (--) and
UNSWCH (---)

make it possible to send output that would normally go to the monitor to an RS232
printer. For example, the LIST instruction normally outputs to the monitor. By typing

SWCH 45 LIST UNSWCH

you can list Forth screen 45 to the printer. If your RS232 printer is not on port 1 and set at 9600
baud, you must modify the word SWCH on your system disk.

The user variables
ALTIN (---vaddr) and
ALTOUT (--- vaddr)

contain values which point to the current input and output devices. The value of ALTIN
is 0 if input is coming from the keyboard, else its value is a pointer to the VDP address
where the PAB for the alternate input device is located. The value of ALTOUT is O if the
output is going to the monitor. Otherwise, it contains a pointer to the PAB of the
alternate output device.

8.6 File I/O Example 1: Relative Disk File

Instruction Comment

HEX Change number base to Hexadecimal

0 VARIABLE BUFR 3E ALLOT Create space for a 64 byte buffer which will be the PAB-BUF
PABS @ A + PAB starts 10 bytes into PABS . This will be the PAB-ADDR
BUFR 1700 Place the PAB-BUF and PAB-VBUF on stack in preparation

16 See footnote 12, page 52.

60 8.6 File I/0 Example 1: Relative Disk File

Instruction Comment
for FILE

FILE TESTFIL Associates the name TESTFIL with these three parameters

TESTFIL File name must be executed before using any other File I/O
words

SET-PAB Create PAB skeleton

RLTV Make TESTFIL a relative file

DSPLY Records will contain printable information

40 REC-LEN Record length is 64 (46h) bytes

F-D" DSK2.TEST" Will create the file descriptor “DSK2.TEST” in the PAB for
TESTFIL.

OPN Open the file. This will create the file on disk unless it

already exists.

To write more than one record to the file, it is necessary to write a procedure. This routine may
be composed on a Forth screen beforehand and loaded at this time.

: FIL-WRT TESTDATA TESTDATA is assumed to be the beginning memory address
of the information to be written to the file
10 0 DO Want to write 16 (10h) records
DUP Duplicate address
BUFR 40 CMOVE Move 64 bytes of information into the PAB-BUF
I REC-NO Place record number into PAB
40 WRT Write one 64-byte record to the disk
40 + Increment address for next record
LOOP DROP Clear stack
H End definition
FIL-WRT Execute writing procedure
4 REC-NO RD Choose a record number to read (4 is chosen here) to verify

correct output. A byte count will be left on the stack and the
read information will be in BUFR

BUFR 40 DUMP Print out the read information to the monitor. (DUMP
routines must be loaded)

CLSE Close the file

8 Access to File I/O Using TI-99/4A Device Service Routines 61

8.7 File I/O Example 2: Sequential RS232 File

Instruction Comment

HEX Change number base to Hexadecimal

0 VARIABLE MY-BUF 4E ALLOT Create a 80 character PAB-BUF

PABS @ 30 + Skip all previous PAB. This will be the PAB-ADDR

MY-BUF 1900 Place the PAB-BUF and PAB-VBUF on stack in
preparation for FILE

FILE PRNTR Associates the name PRNTR with these three parameters

PRNTR File name must be executed before using any other File
I/O words

SET-PAB Create a PAB skeleton

DSPLY PRNTR will contain printable information

SONTL PRNTR may be accessed only in sequential order

VRBL Records may have variable lengths

50 REC-LEN Maximum record length is 80 char.

F-D" RS232.BA=9600" PRNTR will be an RS232 file. Baud rate = 9600.

OPN Open the file

A procedure is necessary to write more than one record to a file. A file-write routine may be
composed on a Forth screen beforehand and loaded at this time. The following is a simple
example:

: PRNT FILE-INFO FILE-INFO is assumed to be the beginning memory
address of the information to be sent to the printer
20 0 DO Will write 32 records
DUP Duplicate address
MYBUF 50 CMOVE Move 80 characters from FILE-INFO to MY-BUF
50 WRT Write one record to printer
50 + Increment address on stack
LOOP DROP Clear stack
H End definition
PRNT Execute write program

CLSE Close the file called PRNTR

62 9 The TI Forth 9900 Assembler

9 The Tl Forth 9900 Assembler

The assembler supplied with your TI Forth system is typical of assemblers supplied with fig-
Forth systems. It provides the capability of using all of the opcodes of the TMS9900 as well as
the ability to use structured assembly instructions. It uses no labels. The complete Forth
language is available to the user to assist in macro type assembly, if desired. The assembler uses
the standard Forth convention of Reverse Polish Notation for each instruction. For example the
instruction to add register 1 to register 2 is:

12A,

As can be seen in the above example, the ‘add’ instruction mnemonic is followed by a comma.
Every opcode in this Forth assembler is followed by a comma. The significance is that when the
opcode is reached during the assembly process, the instruction is compiled into the dictionary.
The comma is a reminder of this compile operation. It also serves to assist in differentiating
assembler words from the rest of the words in the TI Forth language. A complete list of Forth-
style instruction mnemonics is given in the next section.

9.1 TMS9900 Assembly Mnemonics

A, JEQ, RSET,
AB, JGT, RTWP,
ABS, JH, S,

AI, JHE, SB,

ANDI, JL, SBO,
B, JLE, SBZ,
BL, JLT, SETO,
BLWP, JMP, SLA,
c, JNC, soC,
CB, JNE, S0CB,
CI, JNO, SRA,
CKOF, Joc, SRC,
CKON, JoP, SRL,
CLR, LDCR, STCR,
coc, LI, STST,
czc, LIMI, STWP,
DEC, LREX, SWPB,
DECT, LWPI, Szc,
DIV, MoV, SZCB,
IDLE, MOVB, TB,

INC, MPY, X,

INCT, NEG, XOP,

INV, ORI, XOR,

9 The TI Forth 9900 Assembler 63

These words are available when the assembler is loaded. Only the word C, conflicts with the
existing Forth vocabulary.

Most assembly code in Forth will probably use Forth’s workspace registers. The following table
describes the register allocation. The user may use registers 0 through 7 for any purpose. They
are used as temporary registers only within Forth words which are themselves written in
TMS9900 assembly code.

9.2 Forth’s Workspace Registers

Register Usage

Name

0

1

2

3 These registers are available. They are used only within Forth
4 words written in CODE .

5

6

7

UP Points to base of User Variable area

Sp Parameter Stack Pointer

W Inner Interpreter current Word pointer

11 Linkage for subroutines in CODE routines
12 Used for CRU instructions

1P Interpretive Pointer

RP Return Stack Pointer

NEXT Points to the next instruction fetch routine

When the assembler is loaded, it is loaded into the ASSEMBLER vocabulary. To use the
assembler, type ASSEMBLER to make it the context vocabulary. Assembly definitions begin with
either the word CODE or ; CODE . These are used in the following way:

ASSEMBLER
CODE EXAMPLE

This begins the definition of a code routine named EXAMPLE . The above words would be
followed by assembly mnemonics as desired. ; CODE is used as very much like the word DOES> :

ASSEMBLER
: DEF-WRD

. an existing defining word must be included

64 9.2 Forth’s Workspace Registers

. here to create the dictionary header.
; CODE
assembly mnemonics

Later when the newly created defining word DEF-WRD is executed in the following form, a new
word is defined:

DEF-WRD TEST
This will create the word TEST which has as its execution procedure the code following ; CODE .

We will now introduce those words that permit this assembler to perform the various addressing
modes of which the TMS9900 is capable. Each of the remaining examples will show both the
Forth assembler code for various instructions and the more conventional method of coding the
same instructions.

The word NEXT, is defined as (see § 9.8 for definition of *NEXT)
: NEXT, *NEXT B, ;

and is equivalent to the following assembly code:
B *R15

9.3 Workspace Register Addressing

The registers in the Forth code below are referenced directly by number:

Forth Conventional Assembler
CODE EX1 DEF EX1
12A, EX1 A R1,R2

3 INC, INC R3

3 FFFC ANDI, ANDI R3,>FFFC
NEXT, B *R15

9.4 Symbolic Memory Addressing

Symbolic addressing is done with the @() word. It is used after the address.

Forth Conventional Assembler

0 VARIABLE VARl VAR1 BSS 2

5 VARIABLE VAR2 VAR2 DATA 5

CODE EX2 DEF EX2

VAR2 @() 1 MOV, EX2 MOV @VAR2,R1

1 2 SRC, SRC R1,2

1 VAR1 @() S, S R1,@VAR1
VAR2 @() VARl @() SoOC, Soc @VAR2,@VAR1

NEXT, B *R15

9 The TI Forth 9900 Assembler 65

9.5 Workspace Register Indirect Addressing

Workspace Register Indirect addressing is done with the *? word. It is used after the register
number to which it pertains.

Forth Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
CODE EX3 DEF EX3

1 XRAM LI, EX3 LI R1,XRAM
1 *? 2 MOV, MOV *R1,R2
NEXT, B *R15

9.6 Workspace Register Indirect Auto-increment Addressing

Workspace Register Indirect Auto-increment addressing is done with the *?+ word. It is also
used after the register to which it pertains.

Forth Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
CODE EX4 DEF EX4

1 XRAM LI, EX4 LI R1,XRAM
1 *?+ 2 MOV, MOV *R1+,R2
NEXT, B *R15

9.7 Indexed Memory Addressing

The final addressing type is Indexed Memory addressing. This is performed with the @(?) word
used after the Index and register as shown below:

Forth Conventional Assembler

2000 CONSTANT XRAM XRAM EQU >2000

CODE EX5 DEF EX5

XRAM 1 @(?) 2 MoV, EX5 MoV @XRAM(R1) ,R2

XRAM 22 + 2 @(?) MoV XRAM+22@(2) ,XRAM+26@(2)
XRAM 26 + 2 @(?) Mov,

NEXT, B *R15

9.8 Addressing Mode Words for Special Registers

In order to make addressing modes easier for the W, RP, IP, SP, UP and NEXT registers, the
following words are available and eliminate the need to enter the register name separately:

66 9.8 Addressing Mode Words for Special Registers

Register Indirect
Address Indirect Indexed Auto-increment
W *W @(W) W+

RP *RP @(RP) *RP+

IP *IP Q(IP) *IP+

SP *SP Q(SP) *SP+

upP *UP @(ur) *UP+

NEXT *NEXT @(NEXT) *NEXT+

9.9 Handling the Forth Stacks

Both the parameter stack and the return stack grow downward in memory. This means
that removing a cell from the top of either stack requires incrementing the stack pointer
after consuming the cell’s value. Conversely, adding a cell requires decrementing the
stack pointer. The Forth Assembler word *SP+ references the contents of the top cell of
the parameter stack and then increments the stack pointer SP to reduce the size of the
stack by one cell. The following code copies the contents of the stack’s top cell to
register 0 and reduces the stack by one cell:

*SP+ 0 MOV,

The following code adds a cell to the top of the stack and copies the contents of register 1 to the
new cell:

SP DECT,
1 *SP MOV,

The same procedures obtain for the return stack using *RP+ , RP and *RP ; but, be very careful if
you must manipulate the return stack.

9.10 Structured Assembler Constructs

This assembler also permits the user to write structured code, i.e., code that does not use labels.
This is done in a manner very similar to the way that Forth implements conditional constructs.
The major difference is that rather than taking a value from the stack and using it as a true/false
flag, the processor’s condition register is used to determine whether or not to jump. The
following structured constructs are implemented:

IF, .. ENDIF,

IF, .. ELSE, .. ENDIF,
BEGIN, .. UNTIL,

BEGIN, .. AGAIN,

BEGIN, .. WHILE, .. REPEAT,

The three conditional words in the previous list (IF, , UNTIL, and WHILE,) must each be
preceded by one of the jump tokens in the next section.

9 The TI Forth 9900 Assembler

67

9.11 Assembler Jump Tokens

Token Comment Conventional Machine Code
Assembler Used Generated

EQ True if = INE 1606h

GT True if signed > JGT $+1 JMP 1501h 1000h

GTE True if signed > or = JLT 1160h

H True if unsigned > JLE 1200h

HE True if unsigned >or= JL 1A00h

L True if unsigned < JHE 14006h

LE True if unsigned <or= JH 1BOOh

LT True if signed < JLT $+1 JMP 11600h 1000h

LTE True if signed < or = JGT 1500h

NC True if No Carry Joc 1800h

NE True if equal bit not set ~ JEQ 1306h

NO True if No overflow JNO $+1 JMP 1901h 1000h

NP True if Not odd Parity Jop 1C006h

oc True if Carry bit is set INC 1706h

00 True if Overflow INO 1906h

oP True if Odd Parity JOP $+1 JIMP 1C00h 10060h

9.12

Assembly Example for Structured Constructs

The following example is designed to show how these jump tokens and structured constructs are

used:

Forth

Conventional Assembler

(GENERALIZED SHIFTER)

CODE SHIFT
*SP+ 0 MOV,
NE IF,
*SP 1 Mov,
0 ABS,
GTE IF,
10 SLA,
ELSE,
10 SRL
ENDIF,
1 *SP MOV,
ENDIF,
NEXT,

* GENERALIZED SHIFTER

DEF SHIFT
SHIFT MoV *SP+,R0

JEQ L3

MOV *SP,R1

ABS RO

JLT L1

SLA R1,0

JMP L2
L1 SRL R1,0
L2 MoV R1,*SP
L3 B *R15

68 9.12 Assembly Example for Structured Constructs

One word of caution is in order. The structured constructs shown above do not check to ensure
that the jump target is within range (+127,-128 words). This will be a problem only with very
large assembly language definitions and will violate the Forth philosophy of small, easily
understood words.

10 Interrupt Service Routines (ISRs) 69

10 Interrupt Service Routines (ISRs)

The TI-99/4A has the built-in ability to execute an interrupt routine every 1/60 second. This
facility has been extended by the TI Forth system so that the routine to be executed at each
interrupt period may be written in Forth rather than in assembly language. This is an advanced
programming concept and its use depends on the user’s knowledge of the TI-99/4A.

The user Variables ISR and INTLNK are provided to assist the user in using ISRs. Initially, they
each contain the address of the link to the Forth ISR handler, To correctly use User Variable ISR
the following steps should be followed:

10.1 Installing a Forth Language Interrupt Service Routine

1) Create and test a Forth routine to perform the function.

2) Determine the Code Field Address (CFA) of the routine in (1).
3) Write the CFA from (2) into ISR .

4) Write the contents of INTLNK into 83C4h (33732).

The ISR linkage mechanism is designed so that your interrupt service routine will be allowed to
execute immediately after each time the Forth system executes the “NEXT” instruction (as it does
at the end of each code word). In addition, the KEY routine has been coded so that it also executes
“NEXT” after every keyscan whether or not a key has been pressed. The “NEXT” instruction is
actually coded in TI Assembler as “B *NEXT” or “B *R15” because workspace register 15 (R15
or NEXT) contains the address of the next instruction to be executed. This executes the same
procedure as the TI Forth Assembler word NEXT, (see Chapter 9).

Before installing an ISR you should have some idea of how long it takes to execute, keeping in
mind that for normal behavior it should execute in less than 16 milliseconds. ISRs that take
longer than that may cause erratic sprite motion and sound because of missed interrupts. In
addition it is possible to bring the Forth system to a slow crawl by using about 99% of the
processor’s time for the ISR.

The ISR capability has obvious applications in game software as well as for playing background
music or for spooling screens from disk to printer while other activities are taking place. This
final application will require that disk buffers and user variables for the spool task be separate
from the main Forth task or a very undesirable cross-fertilization of buffers may result. In
addition it should be mentioned that disk activity causes all interrupt service activity to halt.

ISRs in Forth can be written as either colon definitions or as CODE definitions. The former
permits very easy routine creation, and the latter permits the same speed capabilities as routines
created by the Editor/Assembler. Both types can be used in a single routine to gain the
advantages of both.

70 10.2 An Example of an Interrupt Service Routine

10.2 An Example of an Interrupt Service Routine

An example of a simple ISR is given below. This example also illustrates some of the problems
associated with ISRs and how they can be circumvented. The problems are:

1) A contention for PAD between a normal Forth command and the ISR routine.

2) Long execution time for the ISR routine. (Even simple routines, especially if they
include output conversion routines or other words that nest Forth routines very deeply,
will not complete execution in 1/60 second.)

These problems are overcome by moving PAD in the interrupt routine to eliminate the
interference between the foreground and the background task. The built-in number formatting
routines are quite general and hence pay a performance penalty. This example performs this
conversion rather crudely, but fast enough that there is adequate time remaining in each 1/60
second to do meaningful computing.

0 VARIABLE TIMER (TIMER will hold the current count)
: UP 100 ALLOT ; (move HERE and thus PAD up 100 bytes)
: DOWN -100 ALLOT DROP* ; (restore PAD to its original location)
: DEMO UP (move PAD to avoid conflict)
1 TIMER +! TIMER @ (increment TIMER , leave on stack)
PAD DUP 5 + (ready to loop from PAD + 5 down to PAD + 1)
DO
0 10 U/ (make positive double, get 1* digit)
SWAP 48 + (generate ASCII digit)
IC! (store to PAD)
-1 +LOOP (decrement loop counter)
PAD 1+ SCRN_START @ 5 VMBW (write to screen)
DOWN ; (restore PAD location)

10.3 Installing the ISR

To install this ISR the following code may be executed:

INTLNK @ (get the ISR ‘hook’ to the stack)

' DEMO CFA (get CFA of the word to be installed as ISR)

ISR ! (place it in user variable ISR)

HEX 83C4 ! (put ISR ‘hook’ into console interrupt service routine)

(Note: the CFA must be in user variable ISR before
writing to 83C4h)

17 Bug Fix: See Appendix J for the source of the fix. It might be clearer why DROP is necessary if it were placed
after +LOOP instead of in the definition of DOWN : After the first pass through the loop in DEMO , the remainder from
U/ is consumed, but the quotient is left for the next pass through the loop and, of course, remains on the stack when
the loop exits. DROP cleans up the stack.

10 Interrupt Service Routines (ISRs) 71

To reverse the installation of the ISR one can either write a 0 to 83C4h or place the CFA of NOP (a
do-nothing instruction) in user variable ISR .

10.4 Some Additional Thoughts Concerning the Use of ISRs

ISRs are uninterruptible. Interrupts are disabled by the code that branches to your ISR routine
and they are not enabled until just before branching back to the foreground routine. Do not
enable interrupts in your interrupt routine.

1) Caution must be exercised when using PABs, changing user variables or using disk
buffers in an ISR, as these activities will likely interfere with the foreground task unless
duplicate copies are used in the two processes.

2) An ISR must never expect nor leave anything on the stacks. It may however use them in
the normal manner during execution.

3) Disk activity disables interrupts as do most of the other DSRs in the TI-99/4A. An ISR
that is installed will not execute during the time interval in which disk data transfer is
active. It will resume after the disk is finished. Note that it is possible to LOAD from disk
while the ISR is active. It will wait for about a second each time the disk is accessed.
The dictionary will grow with the resultant movement of PAD without difficulty.

72 11 Potpourri

11 Potpourri

Your TI Forth system has a number of additional features that will be discussed in this chapter.
These include a facility to save and load binary images of the dictionary so that applications need
not be recompiled each time they are used. Also available are a group of CRU (Communications
Register Unit) instructions and a version of MESSAGE that does not require a disk to display the
standard error messages.

11.1 BSAVE and BLOAD

BSAVE (addr scr, --- scr,)

The word BSAVE is used to save binary images of the dictionary. BSAVE requires two
entries on the stack:

1) The lowest memory address addr in the dictionary image to be saved to disk.

2) The Forth screen number scr, to which the saved image will be written.

BSAVE will use as many Forth screens as necessary to save the dictionary contents from
the address given on the stack to HERE. These are saved with 1000 bytes per Forth screen
until the entire image is saved. BSAVE returns on the stack the number scr, of the first
available Forth screen after the image.

Each Forth screen of the saved image has the following format:

Byte # Contents

0-1 Address at which the first image byte of this Forth screen
will be placed.

2-3 DP for this memory image.

4-5 Contents of CURRENT .

67 Contents of CURRENT @ .

89 Contents of CONTEXT .

10-11 Contents of CONTEXT @ .

12-13 Contents of VOC-LINK .

14 The letter ‘t’.

15 The letter ‘i’

16-23 Not used.

24-1023 Up to 1000 bytes of the memory image.

BLOAD (scr ---flag)

BLOAD is part of your TI Forth kernel and does not have to be loaded before you can use
it. It reverses the BSAVE process and makes it possible to bring in an entire application in
seconds. BLOAD expects a Forth screen number scr on the stack. Before performing the
BLOAD function the 14™ and 15™ bytes are checked to see that they contain the letters “ti”.

11 Potpourri 73

If they do, the load proceeds and BLOAD returns a flag of 0 on the stack signifying a
successful load. If the letters “ti” are not found, then the BLOAD is not performed and a
flag of 1 is returned. This facility permits a conditional binary load to be performed and
if it fails (wrong disk, ezc.), other actions can be performed.

Because the BLOAD and BSAVE facility is designed to start the save (and hence the load) at a user-
supplied address, a complete overlay structure can be implemented. Very important: The user
must ensure that when part of the dictionary is brought in, the remainder of the dictionary (older
part) is identical to that which existed when the image was saved.

1111 Customizing How Tl Forth Boots Up

You may find that you use the same MENU choices frequently and would like to load them
automatically and quickly each time you boot TI Forth. You can do this by using the Forth word
TASK as a reference point for BSAVE . A no-operation word or null definition, TASK is the last
word defined in the resident Forth vocabulary of TI Forth and the last word that cannot be
forgotten using FORGET . Its definition is simply

: TASK ;

Its address can be used to BSAVE a personalized TI Forth system disk by using ' TASK as the
address on the stack for BSAVE . If part of your personalized system includes the 64-column
editor, you can use the 9 screens starting with screen 21 to save your system image:

' TASK 21 BSAVE .

(Be sure to back up the original disk before trying this!). It is important that you ensure that this
procedure does not compromise Forth system screens you may need for your new personalized
system. The . after BSAVE will report the next available screen from the value left on the stack.
Subtracting 21 from that number will tell you how many screens it took to save the binary image
in the above BSAVE line.

You now need to add the code to load what you have just saved the next time you boot your
system. You can also do a little housecleaning by erasing superfluous material from screens 3
and 20:

On Forth screen 3:
* FErase lines 3 — 11. These definitions will be redundant.

* Replace 20 LOAD on line 2 with 21 BLOAD to load the rest of the system from
TASK forward the next time you boot up TI Forth.

On Forth screen 20:
* FErase lines 0 — 8.

* On line 0, put something like: (MENU CHOICES), to indicate the purpose of
lines 9 — 15. You need to keep those lines because MENU will list them to the
screen regardless of how they read.

74 11.1 BSAVE and BLOAD

11.1.2 An Overlay System with BSAVE/BLOAD

As mentioned above, you can implement a complete overlay structure using BSAVE and BLOAD .
It can be a bit tedious to set up, however, because you must ensure that the dictionary structure
older than what you load with BLOAD is identical to what it was when the binary image was saved
with BSAVE . If your application always uses TASK as the reference point, as in the previous
section, for saving and loading all overlays you set up for your application, the situation is
actually pretty simple. If, on the other hand, you wish to have the most efficiently running
application possible with minimum load/reload times, you will want to load as overlays only
those parts of your application that can be considered mutually exclusive or, at least, not
redundant functions.

Such an application might be set up as follows:
1. Anticipate screens where overlays will be saved with BSAVE .
2. Set up storage (variables, arrays, ...) that is common to two or more overlays.

3. Set up the overlay-loading mechanism in your application to use BLOAD to load them.
The following example illustrates such a mechanism using the CASE .. ENDCASE

construct:
0 VARIABLE OVLY (track current ovly#)
: OVLY_LD (ovly# ---)
DUP
CASE

1 OF 120 BLOAD ENDOF

2 OF 130 BLOAD ENDOF

3 OF 140 BLOAD ENDOF

(no overlay change if we get here!)

-1 SWAP (ENDCASE will DROP top number)

ENDCASE
(2 cells to here unless fell thru. Top cell: -1|0]|1)
CASE

-1 OF ." No choice for overlay " . CR ENDOF

0 OF OVLY ! ENDOF (Success! Save new #)

1 OF ." Failed to load overlay "™ . CR ENDOF
ENDCASE ;

4. Program a method for determining which overlay is needed for a particular function or
set of functions and use OVLY to determine whether that overlay needs to be loaded.

5. As the last word of your application before any overlays, define OVERLAYS as a null
definition to be a reference point for BSAVE and make it unforgettable:
: OVERLAYS ;
' OVERLAYS NFA FENCE '!
6. Begin each overlay with the following null definition as a FORGET reference point for
loading the next overlay source screen prior to saving its binary image with BSAVE :
: OVLY_STRT ;

11 Potpourri 75

7. After the successful load (with BLOAD) of an overlay, set OVLY to its number as in the
example in (3) above.

After programming and debugging the application, save the application and its overlays as
follows:

1. Remove all system components from the dictionary that are not required by your
application and that are newer than TASK . To start with a dictionary with only resident
words:

a) Execute -DUMP to load the definition for VLIST .

b) Execute VLIST to get the name of the word immediately following TASK .
Remember that VLIST lists the dictionary from HERE back to older words.

c) FORGET that word to leave only the resident dictionary. If the word following TASK,
i.e., listed just before TASK by VLIST , is XXX, then execute FORGET XXX .

2. Load all system components required to run your application. At the very least, you will
need to load ~-BSAVE to use BSAVE to save the binary images for your application and its
overlays, even though your application will never need it.

3. Load application.
4. Load first overlay.
5. BSAVE application using the address of TASK to a free Forth screen:
' TASK 110 BSAVE .
6. BSAVE first overlay using the address of OVERLAYS to a free Forth screen:
' OVERLAYS 120 BSAVE .
7. For each overlay following the first do the following:
a) FORGET OVLY_STRT
b) 100 LOAD (100 should be where the Forth screen for next overlay resides.)

c) ' OVERLAYS 130 BSAVE . (Obviously, 130 should be a different screen for each
additional overlay.)

11.1.3 An Easier Overlay System in Source Code

The above BSAVE/BLOAD method for setting up an overlay system can be very difficult to
maintain because of the unforgiving nature of BLOAD . Any changes in the application other than
the overlay section will almost certainly necessitate re-saving a// of the overlays. An easier
method to maintain is one such as described in Starting FORTH, p. 80ff. It will be necessarily
slower to load overlays because it uses source screens. You can still save a binary image of the
application as above with the first, presumably most used, overlay to minimize load time; but, it
still may be better for software changes to BSAVE the application without an overlay.

Because you are not using BSAVE to save the overlays, you can dispense with one of the null
definitions. Let us say you are using OVERLAYS , as the word to FORGET each time another
overlay is loaded. OVERLAYS will now separate the main application from the current overlay
and should, of course, be the last word of the main application. OVERLAYS should obviously not
be made unforgettable! The first Forth screen of each overlay should begin with

FORGET OVERLAYS : OVERLAYS ;

76 11.1 BSAVE and BLOAD

You can use the same mechanism (OVLY_LD) as in the previous section for loading the overlays;
but, you will need to change all instances of BLOAD to LOAD and, of course, the screens will be
text screens, not binary images. You will also need to change the code that expects a flag on the
stack from BLOAD because LOAD does not leave a flag.

11.2 Conditional Loads

CLOAD (scr---)

The word CLOAD has been included in your system to assist in easily managing the
process of loading the proper support routines for an application without compiling
duplicates of support routines into the dictionary.

CLOAD calls the words <CLOAD> , WLITERAL , and SLIT . Their functions are described
briefly as follows:

<CLOAD> (--)

performs the primary CLOAD function and is executed or compiled by CLOAD depending
on STATE .

SLIT (--- addr)

is a word designed to handle string literals during execution. Its purpose is to put the
address of the string on the stack and step the Forth Instruction Pointer over it.

WLITERAL ()

is used to compile SLIT and the desired character string into the current dictionary
definition. See the TI Forth Glossary (Appendix D) for more detail.

To use CLOAD , there must always be a Forth screen number on the stack. The word CLOAD must
be followed by the word whose conditional presence in the dictionary will determine whether or
not the Forth screen number on the stack is loaded.

27 CLOAD FO0O

This instruction, for example, will load Forth screen 27 only if a dictionary search, (FIND) , fails
to find FOO . FOO should be the last word loaded by the command 27 LOAD .

It is also possible to use CLOAD to abort the loading of a Forth screen. This is done by using the
command:

0 CLOAD TESTWORD

If this line of code were located on Forth screen 50, and the word TESTWORD was in the present
dictionary, the load would abort just as if a ;S had been encountered.

Caution must be exercised when using BASE->R and R->BASE with CLOAD as these will cause
the return stack to be polluted if a LOAD is aborted and the BASE->R is not balanced by a R-
>BASE at execution time.

11 Potpourri 77

11.3

Memory Resident Messages

message (---)

11.4

LDCR
STCR

B
SBO
SBZ

If the user desires, he may elect to use a version of MESSAGE which is provided on the
system disk (Forth screen 84). This version is spelled with lower case message . The
purpose of this version is to avoid having to place the messages on the diskette in DRO.
The code to install this version is supplied on the same Forth screens with the routines.
Installing message will remove the 5™ disk buffer from the system and use that memory
for storing the error messages. It will then place a patch in the old version of message to
cause it to branch to the new routine. Caution must be exercised if COLD is executed with
the new version in place, as COLD will restore the 5th buffer but will not unpatch the old
version of MESSAGE . After performing the COLD , you must reinstall the new message
or unpatch the old version of MESSAGE prior to the system using the word MESSAGE .
Failure to do this will cause a crash. To repatch MESSAGE , the first two words in the
parameter field must be restored to be the CFAs of WARNING and @ .

CRU Words
(n, n, addr ---)
(n, addr ---n,)
(addr - flag)
(addr ---)
(addr ---)

The above five words have been included to assist in performing CRU (Communications
Register Unit) related functions. They allow the Forth programmer to perform the LDCR,
STCR, TB, SBO and SBZ operations of the TMS9900 without using the Assembler. The
functions of these words will be apparent when someone familiar with these instructions
on the TMS9900 examines their definitions in the Glossary (Appendix D). Also, see the
Editor/Assembler Manual for greater detail.

78 12 TI Forth Dictionary Entry Structure

12 Tl Forth Dictionary Entry Structure

[Editor’s Note: As with several of the appendices in this document, this chapter was added by
the editor.]

The structure of an entry (a Forth word) in the TI Forth dictionary is briefly described in this
chapter to give the reader a better understanding of TI Forth and how its dictionary may differ
from other Forth implementations.

The dictionary entries are shown here schematically as a stack of single cells of 16 bits each:

precedence bit terminator bits smudge bit

(preious entry)
link field address Jfa => |\, link field

name field address nfa s—> | |t|p s‘ len char,
name field &
char,, | char,, t char,,, | space
code field address cfa ::} code field

parameter field address pfa Z:> parameter field

end of definition

At the least, each entry contains a link field (1 cell), a name field (1 — 16 cells), a code field (1
cell) and a parameter field (rn >1 cells).

12.1 Link Field

The link field is the first field in a definition. It contains the address of the name field of the
immediately preceding word in the list to which the its word belongs in the dictionary. The
address of this field is termed the link field address /fa and may be retrieved by pushing the pfa
(see § 12.4) onto the stack and executing LFA .

12.2 Name Field

The name field follows the link field and may be as long as 16 cells (32 bytes). The name field
address nfa points to this field and may be retrieved by pushing the pfa (see § 12.4) onto the
stack and executing NFA .

12 TI Forth Dictionary Entry Structure 79

The first byte is the length byte. The three highest bits of the length byte are the beginning
terminator bit (80h), the precedence bit (40h) and the smudge bit (20h). These are shown in the
above figure as ¢, p and s, respectively. That leaves 5 bits for the character-length len of the
name, which is the reason that TI Forth words have a maximum length of 31 characters. The
name field in TI Forth always occupies an even number of bytes, i.e., it begins and ends on a cell
boundary. The last byte of the name field will be either the last character of the name or a space
and will have the highest bit (80h) set as the ending terminator bit.

To clarify the above diagram a bit, when the name is only one character long, the first character is
obviously the last character and the ending terminator bit will be set in that byte, which results in
a name field occupying just one cell.

The terminator bits are flags used by TRAVERSE (g.v.) to find the beginning or end of the name
field, given the address of one end and the direction (+1]-1) to search.

The precedence bit is used to indicate that a word should be executed rather than compiled during
compilation. It is set by IMMEDIATE , which sets the precedence bit for the most recently
completed definition.

The smudge bit is used to hide|unhide a word from a dictionary search during compilation. If the
smudge bit is set (20h), ' , =FIND and (FIND) will not find the word. During compilation, the
smudge bit is toggled by SMUDGE or similar code and toggled again by ; or similar termination
code.

12.3 Code Field

The code field immediately follows the last cell of the name field. The code field address cfa
points to this field and may be retrieved by pushing the pfa (see § 12.4) onto the stack and
executing CFA . The code field contains the address of the machine-code routine that TI Forth
will run when it executes this word and depends on the nature of the word’s definition. The
following table shows common situations:

Word Code Field Contains
Defined by | Address of What the Runtime Code Does

VARIABLE |Runtime code of VARIABLE |Pushes word’s pfa onto stack

CONSTANT | Runtime code of CONSTANT |Pushes contents of word’s pfa onto
stack

Runtime code of : Executes the list of previously
defined words, the addresses of
which are stored beginning at this
word’s pfa

CODE pfa of word Executes machine code stored
beginning at this word’s pfa

80 12.4 Parameter Field

12.4 Parameter Field

The parameter field follows the code field. The parameter field address pfa points to this address,
which can be retrieved from the nfa by executing

' cccc PFA

The string cccc is the name of the desired Forth word and PFA is the Forth word that gets the pfa
from the nfa, which ' cccc gets for you. The contents of the parameter field depend on the type
of word defined. The following table shows common situations:

Word Defined by | Parameter Field Contains
VARIABLE Value of variable
CONSTANT Value of constant

Mostly a list of the addresses (usually their cfas) of
previously defined words that comprise this word’s
definition

CODE Machine code comprising this word’s runtime code

Appendix A ASCII Keycodes (Sequential Order) 81
Appendix A ASCII Keycodes (Sequential
Order)
ASCII Code ASCII Code
Character hex | decimal | Character hex decimal

NUL <CIRL+> 00h 0 SP 20h 32
SOH <CRL+A> <FCcTN+7> | O1h 1 ! 21h 33
STX <CTRL+B> <FCIN+4> | 02h 2 " <FCTN+P> 22h 34
ETX <CRL+C> <FCIN+1> | O3h 3 # 23h 35
EOT <CIRL+D> <FCIN+2> | 04h 4 $ 24h 36
ENQ <CIRL+E> <FCTN+=> | O5h 5 || % 25h 37
ACK <CTRL+F> <FCIN+8> | O6h 6 & 26h 38
BEL <CTRL+G> <FCIN+3> | O7h 7 ' <FCTN+0> 27h 39
BS <CTRL+H> <FCIN+S> | @8h 8 | (28h 40
HT <CIRL+I> <FCTN+D> | ©9h 9 1) 29h 41
LF <CTRL+}> <FCTN+X> | OAh 10 * 2Ah 42
VT <CTRL+K> <FCIN+E> | OBh 11 + 2Bh 43
FF <CTRL+L> <FCTN+6> | OCh 12 , 2Ch 44
CR <CTRL+M> ODh 13 - 2Dh 45
SO <CTRL+N> <FCIN+5> | OEh 14 . 2Eh 46
ST <CTRL+0> <FCIN+9> | OFh 15 / 2Fh 47
DLE <CTRL+P> 16h 16 0 <CTRL+0> 30h 48
DC1 <CTRL+Q> 11h 17 1 <CTRL+1> 31h 49
DC2 <CTRL+R> 12h 18 2 <CTRL+2> 32h 50
DC3 <CTRL+S> 13h 19 3 <CTRL+3> 33h 51
DC4 <CTRL+T> 14h 20 4 <CTRL+4> 34h 52
NAK <CIRL+U> 15h 21 5 <CTRL+5> 35h 53
SYN <CTRL+V> 16h 22 6 <CTRL+6> 36h 54
ETB <CTRL+W> 17h 23 7 <CTRL+7> 37h 55
CAN <CIRL+X> 18h 24 8 38h 56
EM <CTRL+Y> 19h 25 9 <FCIN+Q> <FCTN+.> | 39h 57
SUB <CTRL+Z> 1Ah 26 <FCTN+/> 3Ah 58
ESC <CTRL+.> 1Bh 27 ; <CTRL+/> 3Bh 59
FS <CTRL+;> 1Ch 28 < <FCIN+0> 3Ch 60
GS <CTRL+=> 1Dh 29 = <FCTN+;> 3Dh 61
RS <CTRL+8> 1Eh 30 > <FCTN+B> 3Eh 62
Us <CTRL+9> 1Fh 31 ? <FCTN+H> 3Fh 63

82 Appendix A ASCII Keycodes (Sequential Order)

...continued from previous page—

ASCII Code ASCII Code
Character hex | decimal || Character hex | decimal
@ <FCTN+J> 40h 64) 60h 96
A <FCIN+K> 41h 65 a 61h 97
B <FCTN+L> 42h 66 b 62h 98
C <FCTN+M> 43h 67 c 63h 99
D <FCTN+N> 44h 68 d 64h 100
E 45h 69 e 65h 101
F <FCIN+Y> 46h 70 f 66h 102
G 47h 71 g 67h 103
H 48h 72 h 68h 104
1 49h 73 i 69h 105
J 4Ah 74 j 6Ah 106
K 4Bh 75 k 6Bh 107
L 4Ch 76 1 6Ch 108
M 4Dh 77 m 6Dh 109
N 4Eh 78 n 6Eh 110
(0] 4Fh 79 0 6Fh 111
P 56h 80 p 70h 112
Q 51h 81 q 71h 113
R 52h 82 r 72h 114
S 53h 83] 73h 115
T 54h 84 t 74h 116
U 55h 85 u 75h 117
\Y 56h 86 A 76h 118
W 57h 87 w 77h 119
X 58h 88 X 78h 120
Y 59h 89 y 79h 121
Z 5Ah 90 z 7Ah 122
[5Bh o1 | ¢ 7Bh 123
\ 5Ch 92 | 7Ch 124
] 5Dh 93 } 7Dh 125
A 5Eh 94 ~ 7Eh 126
B 5Fh 95 DEL 7Fh 127

Appendix B ASCII Keycodes (Keyboard Order)

Appendix B ASCII Keycodes (Keyboard
Order)

ASCII Code ASCII Code
Control Key | hex decimal Function Key | hex decimal
<CTRL+1> 31h 49 <FCIN+1> 03h 3
<CTRL+2> 32h 50 <FCTN+2> 04h 4
<CIRL+3> 33h 51 <FCTN+3> 07h 7
<CTRL+4> 34h 52 <FCIN+4> 02h 2
<CTRL+5> 35h 53 <FCIN+5> 0Eh 14
<CTRL+6> 36h 54 <FCTN+6> 0Ch 12
<CTRL+7> 37h 55 <FCTN+7> 01h 1
<CTRL+8> 1Eh 30 <FCIN+8> 06h 6
<CTRL+9> 1Fh 31 <FCIN+9> 0Fh 15
<CTRL+0> 36h 48 <FCTN+0> 3Ch 60
<CTRL+=> 1Dh 29 <FCTN+=> 05h 5
<CTRL+Q> 11h 11 <FCTN+Q> 39h 57
<CTRL+W> 17h 23 <FCTN+W> 7Eh 126
<CTRL+E> 05h 5 <FCTN+E> 0Bh 11
<CTRL+R> 12h 18 <FCTN+R> 5Bh 91
<CTRL+T> 14h 20 <FCIN+T> 5Dh 93
<CIRL+Y> 19h 25 <FCIN+Y> 46h 70
<CTRL+U> 15h 21 <FCIN+U> 5Fh 95
<CTRL+I> 09h 9 <FCIN+I> 3Fh 63
<CTRL+0> OFh 15 <FCIN+0> 27h 39
<CTRL+P> 16h 16 <FCTN+P> 22h 34
<CTRL+/> 3Bh 59 <FCTN+/> 3Ah 58

84 Appendix B ASCII Keycodes (Keyboard Order)

...continued from previous page—

ASCII Code ASCII Code
Control Key hex decimal Function Key | hex decimal
<CTRL+A> 01h 1 <FCTN+A> 7Ch 124
<CTRL+S> 13h 19 <FCIN+S> 08h 8
<CTRL+D> 04h 4 <FCIN+D> 09h 9
<CTRL+F> 06h 6 <FCTN+F> 7Bh 123
<CTRL+G> 07h 7 <FCTN+G> 7Dh 125
<CTRL+H> 08h 8 <FCTN+H> 3Fh 63
<CTRL+)> 0Ah 10 <FCTN+/> 40h 64
<CTRL+K> 0Bh 11 <FCTN+K> 41h 65
<CTRL+L> 0Ch 12 <FCTN+L> 42h 66
<CTRL+}> 1Ch 28 <FCTN+> 3Dh 61
<CTRL+2> 1Ah 26 <FCIN+2> 5Ch 92
<CTRL+X> 18h 24 <FCTN+X> 0Ah 10
<CTRL+C> 03h 3 <FCIN+C> 60h 926
<CTRL+V> 16h 22 <FCTN+V> 7Fh 127
<CTRL+B> 02h 2 <FCTN+B> 3Eh 62
<CTRL+N> OEh 14 <FCTN+N> 44h 68
<CTRL+M> oDh 13 <FCTN+M> 43h 67
<CTRL+,> 00h 0 <FCIN+> 38h 56
<CTRL+.> 1Bh 27 <FCIN+.> 39h 57

Appendix C Differences between Starting FORTH and TI Forth 85

Appendix C Differences between Starting

FORTH and Tl Forth

Page Word Changes Required

10 BACKSPACE <rcrv+s> produces a backspace on the TI 99/4A.

10 0K TI Forth automatically prints a space before “ok”.

16 The TI Forth dictionary can store names up to 31 characters in length.

18 ~ Not a special character in TI Forth.

18 " Will execute inside or outside a colon definition in TI Forth.

42 /MOD Uses signed numbers in TI Forth. Remainder has sign of dividend.

42 MOD Uses signed numbers in TI Forth. Remainder has sign of dividend.

50 .S This word is available on the TI Forth disk. The TI Forth version prints a
vertical bar (|) followed by the stack contents. The stack contents will
be printed as unsigned numbers. To use the definition shown you must
make the following change because of vocabulary differences: in place of
'S use SP@ 2-:

.S CR SP@ 2- SO @ . -2 +LOOP ;

52 2SWAP This word is not in TI Forth but can be created with the following
definition:

: 2SWAP ROT >R ROT R> ;

52 2DUP This word is not in TI Forth but can be created with the following
definition:

: 2DUP OVER OVER ;

52 20VER This word is not in TI Forth but can be created with the following
definition:

: 20VER SP@ 6 + @ SP@ 6 + @ ;

52 2DROP This word is not in TI Forth but can be created with the following
definition:

: 2DROP DROP DROP ;

57 When you redefine a word that is already in the dictionary, TI Forth will
issue a message saying “WORD isn’t unique”. In the example, a message
saying “GREET isn’t unique” would appear.

60 TI Forth supports 90 screens per disk, Numbered 0-89.

63-82 The TI Forth Editor is different (much better) than the editor described in

this section. Read the section of this 77 Forth Instruction Manual
describing the Editor.

86

Appendix C Differences between Starting FORTH and TI Forth

Page Word Changes Required
83 DEPTH See comments for page 50.
84 COPY TI Forth has a disk based word SCOPY (screen copy) which is exactly like
COPY ,e.g.,
: COPY SCOPY ;
84-5 Ignore Editor words.
89ff THEN THEN is in the TI Forth vocabulary and is a synonym for the word
ENDIF . Many people find ENDIF less confusing than THEN .
91 0> This word is not in TI Forth but can be created with the following
definition:
1 0> 0 > ;
91 NOT This word is not in TI Forth, but can be created with the following
definition:
: NOT 0= ;
101 ?DUP This word is identical to =DUP in TI Forth. Use the following definition if
necessary:
: ?DUP -DUP ;
101ff ABORT" As with the Forth-79 Standard, TI Forth provides ABORT instead of
ABORT" .
102 ?STACK In TI Forth this word automatically calls ABORT and prints the appropriate
error message.
107 2% This word is not in TI Forth, but can be created with the following
definition:
: 2% DUP + ;
107 2/ This word is not in TI Forth, but can be created with the following
definition:
: 2/ 1 SRA ;
108 NEGATE This word is not in TI Forth, but can be created with the following
definition:
: NEGATE MINUS ;
110 I This word exists in TI Forth but also has a duplicate definition, R. I and
R are identical in function.
110 I This word is not in TI Forth, but can be created with the following
definition: (Note: Ris a synonym for I .)
: I' R> R SWAP >R ;
112 If you will notice, there is a . (print) missing in the QUADRATIC

definition. You must add a . after the last + to make QUADRATIC work

Appendix C Differences between Starting FORTH and TI Forth 87

Page Word Changes Required
correctly.

112 Ignore the last two paragraphs. They do not apply.

131 Just a reminder! You must define 2DUP and 2DROP before the COMPOUND
example may be used.

132 There is a mistake in the second definition of TABLE. It should look like
this:

: TABLE CR 11 1 DO
11 1 DO I J *5 U.R LOOP CR LOOP ;

134 When you execute the DOUBLING example, an extra number will be
printed after 16384. This is because +LOOP behaves a little differently in
TI Forth.

136 In the definition of COMPOUND , the CR should precede SWAP instead of
LOOP .

137 XX When an error is detected in TI Forth, the stack is cleared but then the
contents of BLK and IN are saved on the stack to assist in locating the
error. The stack may be completely cleared with the word SP! .

142 PAGE This word is not in TI Forth, but can be created with the following
definition:

: PAGE CLS 0 0 GOTOXY ;

161 U/MOD This word is not in TI Forth, but can be created with the following
definition:

: U/MOD U/ ;

161 /LOOP This word is not in TI Forth.

162 OCTAL OCTAL does not exist in TI Forth. See p. 163 for definition.

164-5 Numbers in TI Forth may only be punctuated with periods. Commas,
slashes and other marks are not permitted. Any number containing a
period (.) is considered double-length. In later examples using D. and
UD. , replace all punctuation in the inputs with decimal points. It is
recommended that you not place more than one decimal place in each
number if you want valid output.

166 up. This word is already defined in TI Forth.

173 D- This word is not in TI Forth, but can be created with the following
definition:

: D- DMINUS D+ ;
173 DNEGATE This word is not in TI Forth, but can be created with the following

definition:

88

Appendix C Differences between Starting FORTH and TI Forth

Page

Word

Changes Required

173

173

173

173

173

173

174

DMAX

DMIN

Do=

D<

DU<

M+

: DENEGATE DMINUS ;

This word is not in TI Forth, but can be
definition:

created with the following

: DMAX 20VER 20VER D- SWAP DROP 0O<

IF 2SWAP ENDIF
2DROP ;

This word is not in TI Forth, but can be
definition:

: DMIN 20VER 20VER 2SWAP D-
IF 2SWAP ENDIF
2DROP ;

This word is not in TI Forth, but can be
definition:

: D= D- 0= SWAP 0= AND ;

This word is not in TI Forth, but can be
definition:

: DO= 0. D= ;

This word is not in TI Forth, but can be
definition:

: D< D- SWAP DROP O<;

This word is not in TI Forth, but can be
definition:
: DU< ROT SWAP OVER OVER
U<

created with the following

SWAP DROP 0<

created with the following

created with the following

created with the following

created with the following

IF (determined less using high order halves)
DROP DROP DROP DROP 1

ELSE (test if high halves equal)

IF (equal so just test low halves)

U<
ELSE (test fails)

DROP DROP 0

ENDIF
ENDIF ;

This word is not in TI Forth, but can be
definition:

created with the following

Appendix C Differences between Starting FORTH and TI Forth 89

Page Word Changes Required
: M+ 0 D+ ;

174 M/ This word is different in TI Forth and can be changed with the following
definition:

: M/ M/ SWAP DROP ;

174 M*/ Not available in TI Forth because no triple precision arithmetic has been
included. This could be created using either a relatively complicated
colon definition or by using the Assembler included with TI Forth.

183ff Variables in TI Forth are required to be initialized at creation, thus the

193 2VARIABLE

193 2!

193 2@

193 2CONSTANT

199

204 DUMP

word VARIABLE takes the top item on the stack and places it into the
variable as its initial value. For example, 12 VARIABLE DATE both
creates the variable DATE and initializes it to 12. If desired, the advanced
user can use the words <BUILDS and DOES> to create a new defining
word, VARIABLE , which has exactly the behavior of VARIABLE as used
in this section. The code to do this is:

: VARIABLE <BUILDS 0 , DOES> ;

This word is not in TI Forth, but can be created with the following
definition:

: 2VARIABLE <BUILDS 0. , , DOES> ;

This definition does not require a number to be on the stack when it is
executed.

This word is not in TI Forth, but can be created with the following
definition:

: 2! SRR ! R> 2+ ! ;

This word is not in TI Forth, but can be created with the following
definition:

: 20 >R R 2+ @ R> @ ;

This word is not in TI Forth, but can be created with the following
definition:

: 2CONSTANT <BUILDS , , DOES> 2@ ;
This definition does nof require a number on the stack.

You must place a 0 on the stack before executing VARIABLE COUNTS 10
ALLOT . This, however, initializes only the first element of the array
COUNTS to 0. You must execute either the FILL or ERASE instruction
at the bottom of the page to properly initialize the array.

TI Forth already has a dump instruction which must be loaded from the
disk. Dumps are always printed in hexadecimal. See Appendix D for
location of DUMP .

90 Appendix C Differences between Starting FORTH and TI Forth
Page Word Changes Required
207 CREATE The CREATE word of TI Forth behaves somewhat differently. Hackers
should consult fig-Forth documentation.
216 EXECUTE Because this word operates a little differently in TI Forth, it must be
preceded by the word CFA . The example should read:
' GREET CFA EXECUTE
217 The example illustrating indirect execution must be modified to work in
TI Forth:
' GREET CFA POINTER ! POINTER @ EXECUTE
218 ['1] In TI Forth, this word is unnecessary as the word ' will take the following
word of a definition when used in a definition.
219 NUMBER In TI Forth, NUMBER is always able to convert double precision numbers.
219 'NUMBER TI Forth does not use 'NUMBER to locate the NUMBER routine.
220 In TI Forth, the name field is variable length and contains up to 31
characters. Also, the link field precedes the name field in TI Forth.
225 EXIT This word is ;S in TI Forth. ;S is the word compiled by ; so to create
EXIT we might use:
: EXIT [COMPILE] ;S ; IMMEDIATE
225 I In TI Forth, the interpreter pointer is called IP , not I .
232 See Chapter 1 in this 77 Forth Instruction Manual for instructions for
loading elective blocks.
232 RELOAD This instruction is not available in TI Forth.
233 H This word is DP (dictionary pointer) in TI Forth.
235 'S In TI Forth, SP@ is used instead of 'S .
240 See Appendix E in this 71 Forth Instruction Manual for a complete list
of user variables.
240 >IN This word is IN in TI Forth.
245 LOCATE TI Forth does not support LOCATE .
256 CcopY In TI Forth, this word is SCOPY . SCOPY is disk resident. See Appendix
D for location.
259 ['1] Change the ['] to ' in the bottom example. In TI Forth, ' will compile
the address of the next word in the colon definition.
261 >TYPE Unnecessary in non-multiprogramming systems. Not present in TI Forth.
265 RND TI Forth has two disk resident random number generators: RND and

RNDW. See Appendix D for locations and descriptions. See also
definitions for SEED and RANDOMIZE .

Appendix C Differences between Starting FORTH and TI Forth 91

Page Word Changes Required

266 MOVE In TI Forth, MOVE moves u words in memory, not u bytes. MOVE can be

redefined to conform to Starting FORTH:
: MOVE 2/ MOVE ;

266 <CMOVE Not present in TI Forth. Must be created with the Assembler if required.
This word is used only when the source and destination regions of a move
overlap and the destination is higher than the source.

270 WORD In TI Forth, the word WORD does not leave an address on the stack.

270 TEXT This word is not available in TI Forth, but can be defined as follows:

: TEXT PAD 72 BLANKS PAD HERE - 1-
DUP ALLOT MINUS SWAP WORD ALLOT ;
If you want the count to also be stored at PAD, remove the 1- from the
definition.

277 >BINARY This is named (NUMBER) in TI Forth.

277 Because WORD does not leave an address on the stack, it is necessary to
redefine PLUS as follows:

: PLUS 32 WORD DROP NUMBER + ." =" . ;

279 NUMBER This definition of NUMBER is not compatible with TI Forth.

281 -TEXT Not in TI Forth. Use the definition on page 282.

292 TI Forth uses the word pair <BUILDS .. DOES> to define a new defining
word. <BUILDS calls CREATE as part of its function.

297 To create a byte ARRAY in TI Forth:

: ARRAY <BUILDS OVER , * ALLOT
DOES> DUP @ ROT * + + 2+ ;

298 Just a reminder! Don’t forget to define 2* before trying the example at
the bottom of the page. Also, replace the word CREATE with <BUILDS .

301 (DO) This is the runtime behavior of DO just as listed. 2>R is not used,
however.

301 DO The given definition of DO is not compatible with TI Forth. TI Forth’s
definition of DO is much more complex because of compile-time error
checking.

303 (LITERAL) The TI Forth name for this word is LIT .

306 TI Forth remains in compilation mode until a ; is typed.

92 Appendix D The TI Forth Glossary

Appendix D The Tl Forth Glossary

TI Forth words appear in this glossary on the left of the entry line for that word and in the order
of the ASCII collating sequence, which is displayed as a handy reference at the bottom of each
page of this appendix. The Forth screen on which the word is defined is right-justified on the
entry line along with the MENU choice that will load its definition. If the word is part of the core
system, it is listed as “RESIDENT”. The stack effects are listed on the second line. The stack
effects on the return stack may also be shown. These will be indicated by “R:” following the “(”
as in the following: “(R: n ---)”, which would mean that a 16-bit number 7 is removed from the
top of the return stack after the word being described is executed.

D.1 Explanation of Some Terms and Abbreviations

Term/Abbreviation Meaning
addr, addr,, ... memory address
b byte
col column position
ccee, nRAn, XXXx string representation
cfa code field address
char ASCII character code
count count (length)
dd,d,, .. signed double-precision number
dotcol, dotcol,, dotcol,, ... dot column position
dotrow, dotrow,, dotrow,, ... dot row position
drive refers to DRO, DR1, DR2 (DSK1, DSK2, DSK3)
flag Boolean flag
false Boolean false flag (value = 0)
fffh o floating point number
Ifa link field address
n, Ny, n,, .. signed single-precision number
nfa name field address
pfa parameter field address
row row position
rem remainder
scr screen number
spr sprite number
true Boolean true flag (value # 0)
tol tolerance limit
u unsigned single-precision number
ud unsigned double-precision number
vaddr VDP address

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHR[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 93

D.2 TI Forth Word Descriptions

1CSP

#>

#MOTION

#S

RESIDENT
(naddr---)
Store 16 bits of n at address. Pronounced “store”.
SCR 39 -COPY
(addr ---)

A string terminated with a " must follow this word. This string will be stored at the
specified address; however, the character count is not stored.

RESIDENT
()
Save the stack position in user variable CSP . Used as part of the compiler security.
RESIDENT
(dy-—dy)

Generate from a double number d,, the next ASCII character which is placed in an
output string. Result d, is the quotient after division by the value in BASE , and is
maintained for further processing. Used between <# and #> . See #S .

RESIDENT
(d --- addr count)

Terminates numeric output conversion by dropping d, leaving the text address and
character count suitable for TYPE .

SCR 59 -GRAPH
()
Sets sprite numbers 0 to z - 1 in automotion.
RESIDENT
(dy-dy)

Generates ASCII text from d, in the text output buffer, by the use of #, until a zero
double number d, results. Used between <# and #> .

RESIDENT
(-—-pfa)
Used in the form:
' nnnn

Leaves the parameter field address of dictionary word nnnn. As a compiler
directive, executes in a colon definition to compile the address of a literal. If the

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

94

D.2 TI Forth Word Descriptions

word is not found after a search of CONTEXT and CURRENT , an appropriate error
message is given. Pronounced “tick”.

(RESIDENT
(=)
Used in the form:

(ccce)

Ignore a comment that will be delimited by a right parenthesis on the same Forth
screen. May occur during execution or in a colon definition. A blank after the
leading parenthesis is required.

(+LOOP) RESIDENT
()
The runtime procedure compiled by +LOOP , which increments the loop index by »
and tests for loop completion. See +LOOP .

.") RESIDENT
(=)
The runtime procedure, compiled by ." ,which transmits the following in-line text to
the selected output device. See ."

(; CODE) RESIDENT
(=)
The runtime procedure, compiled by ; CODE , that rewrites the code field of the most
recently defined word to point to the machine code sequence following ; CODE . See
; CODE .

(ABORT) RESIDENT
()
Executes after an error when WARNING < 0. This word normally executes ABORT ,
but may be redefined (with care) to execute a user’s alternative procedure.

(DO) RESIDENT
(=)
The runtime procedure complied by DO which moves the loop control parameters to
the return stack. See DO .

(DOES>) RESIDENT
(=)
The run time procedure compiled by DOES> .

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 95

(FIND)

(LINE)

(LOOP)

(NUMBER)

(OF)

*/

RESIDENT
(‘addr, addr, --- false | pfa b true)

Searches the dictionary starting at the name field address addr,, matching to the text
at addr,. Returns parameter field address pfa, length byte b of name field, and #rue
for a good match. If no match is found, only false is left.

RESIDENT
(n scr--- addr count)

Convert the line number n and the Forth screen scr to the disk buffer address
containing the data. A count of 64 indicates the full line text length.

RESIDENT
(=)

The runtime procedure compiled by LOOP , which increments the loop index and tests
for loop completion. See LOOP .

RESIDENT
(d, addr,---d, addr,)

Convert the ASCII text beginning at addr, + 1 with respect to BASE . The new value
is accumulated into double number d,, being left as d,. addr, is the address of the
first unconvertible digit. Used by NUMBER .

RESIDENT
()
The run time procedure compiled by OF .

RESIDENT
(n, n,-—-ny)
Leave the signed product of two signed numbers.

RESIDENT

(ny ny ny---n,)

Leave the ratio n, = n,*n,/n,, where all are signed numbers. Retention of an
intermediate 31-bit product permits greater accuracy than would be available with the
sequence :

n, n, * n; /

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

96 D.2 TI Forth Word Descriptions

*/MOD RESIDENT
(n, nyny ---rem quot)
Leave the quotient quot and remainder rem of the operation n,*n,/n,. A 31-bit
intermediate product is used as for */ .

+ RESIDENT
(n, ny--ny)
Leave the sum of n, + n, as n,.

+! RESIDENT
(naddr ---)
Add n to the value at the address. Pronounced “plus store”.

+- RESIDENT
(n, ny-—-ny)
Apply the sign of n, to n,, which is left as n,.

+BUFF RESIDENT
(‘addr, --- addr, flag)
Advance the disk buffer address addr, to the address of the next buffer addr,.
Boolean flag is false when addr, is the buffer presently pointed to by user variable
PREV .

+LOOP RESIDENT

Runtime: (n, ---) Compilation: (addr n,---)
Used in a colon-definition in the form:

DO .. n, +LOOP

At run time, +LOOP selectively controls branching back to the corresponding DO
based on n,, the loop index and the loop limit. The signed increment #, is added to
the index and the total compared to the limit. The branch back to DO occurs until the
new index is equal to or greater than the limit (7, > 0), or until the new index is equal
to or less than the limit (7, < 0). Upon exiting the loop, the parameters are discarded
and execution continues ahead.

At compile time, +LOOP compiles the runtime word (+LOOP) and the branch offset
computed from HERE to the address left on the stack by DO . The value , is used for
compile-time error checking.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 97

-DUP

-FIND

-TRAILING

RESIDENT
(n-)

Store n into the next available dictionary memory cell, advancing the dictionary
pointer. Pronounced “comma”.

RESIDENT
(n,n,---ny)
Leave the difference n, of n, — n,.

RESIDENT
()

Continue interpretation with the next Forth screen on disk. Pronounced “next
screen”.

RESIDENT
(n,-—-n,|nn)
Duplicate n, only if it is non-zero. This is usually used to copy a value just before
IF, to eliminate the need for an ELSE clause to drop it.

RESIDENT
(--- false | pfa count true)

Accepts the next text word (delimited by blanks) in the input stream to HERE ,
searches the CONTEXT and then CURRENT vocabularies for a matching entry. If
found, the dictionary entry’s parameter field address pfa, its length byte count and
true are left. Otherwise, only false is left.

RESIDENT
(addrn, --- addr n,)

Adjusts the character count n, of a text string beginning at addr to suppress the
output of trailing blanks, i.e., the characters at addr + n, to addr + n, are blanks.

RESIDENT
(n--)

Print a number from a signed 16-bit two’s complement value n, converted according
to the numeric base stored in BASE . A trailing blank follows. Pronounced “dot”.

" RESIDENT
(—)
Used in the form:
" ccecc”
ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

98 D.2 TI Forth Word Descriptions
Compiles an in-line string cccc (delimited by the trailing ") with an execution
procedure to transmit the text to the selected output device. If executed outside a
definition, ." will immediately print the text until the final * . See (.").

.LINE RESIDENT
(nscr---)
Print on the terminal device, a line of text from the disk by its line number » and
Forth screen number scr. Trailing blanks are suppressed.

.R RESIDENT
(nyny---)
Print the number 7, right aligned in a field whose width is #,. No following blank is
printed.

.S SCR 43 -DUMP
()
Prints the entire contents of the parameter stack as unsigned numbers in the current
BASE .

/ RESIDENT
(nyny-—-ny)
Leave the quotient n, of n,/n,.

/MOD RESIDENT
(n,n,---remny)
Leave the remainder rem and signed quotient n, of n,/n,. The remainder has the sign
of the dividend.

06123 RESIDENT
(~=-n)
These small numbers are used so often that it is attractive to define them by name in
the dictionary as constants.

o< RESIDENT
(n---flag)
Leave a true flag if the number is less than zero (negative), otherwise leave a false
flag.

0= RESIDENT

(n---flag)

Leave a true flag if the number is equal to zero, otherwise leave a false flag.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 99

OBRANCH RESIDENT
(flag ---)
The runtime procedure to conditionally branch. If flag is false (zero), the following
in-line parameter is added to the interpretive pointer to branch ahead or back.
Compiled by IF , UNTIL and WHILE .
1+ RESIDENT
(ny---ny)
Increment #n, by 1.
1- RESIDENT
(n,---ny)
Decrement n, by 1.
2+ RESIDENT
(n,-—-ny)
Leave n, incremented by 2 as n,.
2— RESIDENT
(ny---ny)
Leave n, decremented by 2 as n,.
RESIDENT
()
Used in the form called a colon definition:
! CCCC .. ;
Creates a dictionary entry defining cccc as equivalent to the following sequence of
Forth word definitions ‘..."” until the next ; or ; CODE . The compiling process is done
by the text interpreter as long as STATE is non-zero. Other details are that the
CONTEXT vocabulary is set to the CURRENT vocabulary and that words with the
precedence bit set are executed rather than being compiled.
(traceable) SCR 44 -TRACE

(=)

This is an alternate definition of : that adds the capability to colon definitions of
being traced when they are executed. When a colon definition is compiled under the
TRACE option, tracing output may be turned on with TRON and off with TROFF prior
to executing the word so defined. After TRON is executed, each time the word is
executed its name will be output along with the contents of the stack. See TRACE ,
UNTRACE , TRON and TROFF .

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

100

D.2 TI Forth Word Descriptions

; CODE

<#

RESIDENT
()

Terminates a colon definition and stops further compilation. Compiles the runtime
;S .
’

SCR 74 -CODE
()
Used in the form:
: cccc .. ;CODE
assembly mnemonics

Stop compilation and terminate a new defining word cccc by compiling (; CODE) .
Set the CONTEXT vocabulary to ASSEMBLER, assembling to machine code the
following mnemonics.

When cccc later executes in the form:
cccc nnnn

the word nnnn will be created with its execution procedure given by the machine
code following cccc, that is, when nnnn is executed, it does so by jumping to the
code after nnnn . An existing defining word must exist in cccc prior to ; CODE .

RESIDENT
()

Stop interpretation of a Forth screen. ;S is also the runtime word compiled at the end
of a colon definition, which returns execution to the calling procedure.

RESIDENT
(n, n, - flag)
Leave a true flag if n, is less than n,, otherwise, leave a false flag.
RESIDENT
(=)
Setup for pictured numeric output formatting using the words:
<# # #S SIGN #>

The conversion is done on a double number producing text at PAD (working
downward toward HERE), eventually suitable for output by TYPE. The picture
template between <# and #> represents the output picture from right to left, i.e., the
rightmost digit is processed first. See #, #S, SIGN , #> and HOLD .

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 101

<BUILDS

<CLOAD>

=CELLS

>ARG

>F

RESIDENT
()
Used within a colon-definition:
: cccc <BUILDS .. DOES> .. ;

Each time cccc is executed, <BUILDS defines a new word with a high level
execution procedure. Executing cccc in the form:

CCCC nnnn

uses <BUILDS to create a dictionary entry for nnnn . When nnnn is later executed, it
has the address of its parameter area on the stack and executes the words after DOES>
in cccc . <BUILDS and DOES> allow runtime procedures to be written in high-level
rather than in assembler code (as required by ; CODE).

SCR 21 BOOT SCR

(=)
The runtime procedure compiled by CLOAD .
RESIDENT
(nyny - flag)
Leave a true flag if n, = n,, otherwise leave a false flag.
RESIDENT

(‘addr, --- addr, | addr,)

This instruction expects an address or an offset to be on the stack. If this number is
odd, it is incremented by 1 to put it on the next even word boundary. Otherwise, it
remains unchanged.

RESIDENT

(n, n, - flag)
Leave a true flag if n, is greater than n,, otherwise leave a false flag.

SCR 45 -FLOAT
(/)
Moves a floating point number f from the stack into the ARG register.

SCR 48 -FLOAT
(1)

This instruction expects to be followed by a string representing a legitimate floating
point number terminated by a space. This string is converted into floating point and
placed on the stack. This instruction can be used in colon definitions or directly from
the keyboard.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

102 D.2 TI Forth Word Descriptions

>FAC SCR 45 -FLOAT
/)
Moves a floating point number from the stack into the FAC register.

>R RESIDENT
(n---) (Ri-—-n)
Remove a number from the parameter stack and place as the most accessible number
on the return stack. Use should be balanced with R> in the same definition.

? RESIDENT
(addr ---)
Print the value contained at address addr in free format according to the current
BASE . This word is short for the two words, @ . .

?7COMP RESIDENT
()
Issue error message if not compiling.

?CSP RESIDENT
()
Issue error message if stack position differs from value saved in CSP .

?ERROR RESIDENT
(flagn ---)
Issue an error message number 7 if the Boolean flag is true.

?EXEC RESIDENT
()
Issue an error message if not executing.

?FLERR SCR 49 -FLOAT
()
Determines if the previous floating point operation resulted in an error. An
appropriate error message is printed upon finding an error.

?KEY RESIDENT

(--- char)

Scans the keyboard for input. If no key is pressed, a 0 is left on the stack. Else, the
ASCII code of the key pressed is left on the stack.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 103

?7KEY8 RESIDENT
(~=-n)
Scans the keyboard for input. If no key is pressed, a 0 is left on the stack. Else, the
8-bit code of the key pressed is left on the stack.

7LOADING RESIDENT
()
Issue an error message if not loading.

?PAIRS RESIDENT
(nyny---)
Issue an error message if n, does not equal n,. The message indicates that compiled
conditionals do not match.

?STACK RESIDENT
()
Issue an error message if the stack is out of bounds.

?TERMINAL RESIDENT
(---flag)
Perform a test on the terminal keyboard for actuation of the break key (<BREAK>). A
true flag indicates actuation. On the TI-99/4A, <FCTN+4>, <BREAK> and <CLEAR> are
all the same key.

@ RESIDENT
(addr---n)
Leave the 16-bit contents n of addr.

A$$M SCR 82 -ASSEMBLER
()
This word is compiled into the FORTH vocabulary and marks the end of the
ASSEMBLER vocabulary. It is used by CLOAD .

ABORT RESIDENT
()
Clear the stacks and enter the execution state. Return control to the operator’s
terminal, printing an appropriate message.

ABS RESIDENT
(n,—ny)
Leave the absolute value of n, as n,.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

104 D.2 TI Forth Word Descriptions

AGAIN RESIDENT
Compilation: (addr n---)
Used in a colon definition in the form:

BEGIN .. AGAIN

At run time, AGAIN forces execution to return to corresponding BEGIN . There is no
effect on the stack. Execution cannot leave the loop unless R> DROP is executed one
level below.
At compile time, AGAIN compiles BRANCH with an offset from HERE to addr. The
vale n is used for compile time error checking.

ALLOT RESIDENT
(n---)
Add the signed number n to the dictionary pointer DP. May be used to reserve
dictionary space or re-origin memory.

ALTIN RESIDENT
(--- addr)
A user variable whose value is 0 if input is coming from the keyboard else its value is
a pointer to the VDP address where the PAB (Peripheral Access Block) for the
alternate input device is located.

ALTOUT RESIDENT
(--- addr)
A user variable whose value is 0 if output is going to the monitor else its value is a
pointer to the VDP address where the PAB (Peripheral Access Block) for the
alternate output device is located.

AND RESIDENT
(nyny-—-ny)
Leave the bitwise logical AND of », and n, as n,.

APPND SCR 69 -FILE
()
Assigns the APPEND attribute to the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

ARG SCR 45 -FLOAT

(--- addr)

A constant which contains the address of the ARG register.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 105

ASSEMBLER SCR 74 -ASSEMBLER

ATN

B/BUF

B/BUF$

B/SCR

B/SCR$

BACK

BASE

()

The name of the TI Forth Assembler vocabulary. Execution makes ASSEMBLER the
CONTEXT vocabulary. ASSEMBLER is immediate, so it will execute during the
creation of a colon definition to select this vocabulary at compile time. See
VOCABULARY .

SCR 50 -FLOAT
(/i 1)

Calculates the arctangent in radians of f; leaving the floating point result f; on the
stack.

RESIDENT
(w=-n)

This constant leaves the number of bytes n per disk buffer, the byte count read from
disk by BLOCK .

RESIDENT
(--- addr)
A user variable which contains the number of bytes per buffer.

RESIDENT
(=)

This constant leaves the number of blocks per editing screen. By convention, an
editing screen is 1024 bytes organized as 16 lines of 64 characters each.

RESIDENT
(--- addr)
A user variable which contains the number of blocks per Forth screen.

RESIDENT
(addr ---)

Calculate the backward branch offset from HERE to addr and compile into the next
available dictionary memory address.

RESIDENT
(- addr)

A user variable containing the current number base used for input and output
conversion.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

106 D.2 TI Forth Word Descriptions
BASE->R RESIDENT
(=)
Place the current number base on the return stack. Caution must be exercised when
using BASE->R and R->BASE with CLOAD as these will cause the return stack to be
polluted if a LOAD is aborted and the BASE->R is not balanced by a R->BASE at
execution time. See R->BASE .
BEEP SCR 60 -GRAPH
(=)
Produces the sound associated with correct input or prompting.
BEGIN RESIDENT
Compilation: (--- addrn)
Occurs in a colon-definition in the form:
BEGIN .. UNTIL
BEGIN .. AGAIN
BEGIN .. WHILE .. REPEAT
At runtime, BEGIN marks the start of a sequence that may be repetitively executed. It
serves as a return point from the corresponding UNTIL , AGAIN or REPEAT . When
executing UNTIL, a return to BEGIN will occur if the top of the stack is false; for
AGAIN and REPEAT a return to BEGIN always occurs.
At compile time, BEGIN leaves its return address addr and n for compiler error
checking.
BL RESIDENT
(--- char)
A constant that leaves the ASCII value for “blank”.
BLANKS RESIDENT
(‘addr count ---)
Fill an area of memory beginning at addr with count blanks.
BLK RESIDENT
(--- addr)
A user variable containing the block number being interpreted. If zero, input is being
taken from the terminal input buffer.
BLOAD RESIDENT

(scr ---flag)

Loads the binary image at sc» which was created by BSAVE . BLOAD returns a true
flag (1) if the load was not successful and a false flag (0) if the load was successful.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 107

BLOCK

BOOT

BRANCH

BSAVE

BUFFER

C!

RESIDENT
(n---addr)

Leave the memory address of the block buffer containing block n. If the block is not
already in memory, it is transferred from disk to whichever buffer was least recently
written. If the block occupying that buffer has been marked as updated, it is written
to disk before block # is read into the buffer. See also BUFFER , R/W, UPDATE and
FLUSH .

RESIDENT
()

Examines the Forth screen designated as the boot screen (screen #3). If it contains
only displayable characters (ASCII 32 — 127), it performs a LOAD on that screen.

RESIDENT
()

The runtime procedure to unconditionally branch. An in-line offset is added to the
interpretive pointer (IP) to branch ahead or back. BRANCH is compiled by ELSE
AGAIN , REPEAT , and ENDOF .

SCR 83 -BSAVE
(‘addr scr, --- scr,)

Places a binary image (starting at scr, and going as far as necessary) of all dictionary
contents between addr and HERE . The next available Forth screen number scr, is
returned on the stack. See BLOAD .

RESIDENT
(n--—-addr)

Obtain the next memory buffer, assigning it to block n. If the contents of the buffer
is marked as updated, it is written to the disk. The block is not read from the disk.
The address left is the first cell within the buffer for data storage.

RESIDENT
(b addr---)
Store the low-order byte (8 bits) of b (16-bit number on the stack) at addr.
RESIDENT
(b)

Store the low-order byte (8 bits) of b (16-bit number on the stack) into the next
available dictionary byte, advancing the dictionary pointer. This instruction should
be used with caution on byte addressing, word oriented computers such as the TI
9900.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

108 D.2 TI Forth Word Descriptions
C/L RESIDENT
(--n)
Returns on the stack the number of characters per line.
C/L$ RESIDENT
(---addr)
A user variable whose value is the number of characters per line.
c@ RESIDENT
(addr---b)
Leave the 8-bit contents of the memory address on the stack.
CASE RESIDENT
Compilation: (---) Runtime: (n---n)
Used in a colon definition to initiate the construct:
CASE
n, OF .. ENDOF
n, OF .. ENDOF
ENDCASE
At runtime, CASE itself does nothing with the number # on the stack; but, it must be
there for OF or ENDCASE to consume. If n = n,, the code between the immediately
following OF .. ENDOF is executed. Execution then continues after ENDCASE . If n
does not match any of the values preceding any OF , the code between the last ENDOF
and ENDCASE is executed and may consume n; but, one cell must be left for
ENDCASE to consume. Execution then continues after ENDCASE .
CFA RESIDENT
(pfa---cfa)
Convert the parameter field address pfa of a definition to its code field address cfa .
CHAR SCR 57 -GRAPH

(n, n, nyn, char ---)

Defines character # char to have the pattern specified by the 4 numbers (n,, n,, n,, n,)
on the stack. The definition for character #0 by default resides at 800h. Each
character definition is 8 bytes long with each number on the stack representing two
bytes.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 109

CHAR-CNT!

CHAR-CNT@

CHARPAT

CHK-STAT

CLEAR

CLINE

CLIST

CLOAD

SCR 69 -FILE
(n-)

Used in file I/O to store in the current PAB the character count of a record to be
transmitted by WRT .

SCR 69 -FILE
(= n)

Used in file I/O to retrieve from the current PAB the character count of a record that
has been read. Used by RD .

SCR 57 -GRAPH
(char ---n,n,nyn,)

Places the 4-number (8-byte) pattern of a specified character char on the stack. By
default, the definition for character #0 resides at 800h.

SCR 68 -FILE
(=)

Checks for errors following an I/O operation. If an error has occurred, an appropriate
message is printed.

RESIDENT
(scr---)
Fills the designated Forth screen with blanks.
SCR 66 -64SUPPORT
(‘addr count n ---)

Prints one line of tiny characters on the display screen. CLINE expects on the stack
the address addr of the line to be written in memory, the number of characters count
in that line, and the line number » on which it is to be written on the display screen.
CLINE calls SMASH to do the actual work. See SMASH and CLIST .

SCR 66 -64SUPPORT
(scr---)

Lists the specified Forth screen in tiny characters to the monitor. CLIST executes a
multiple call to CLINE . See CLINE and TCHAR .

SCR 21 BOOT SCR
(scr---)
Used in the form:

scr CLOAD nnnn

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

110

D.2 TI Forth Word Descriptions

CLR-STAT

CLS

CLSE

CMOVE

CODE

COINC

COINCALL

COINCXY

CLOAD will load Forth screen scr only if the word nnnn (the last word loaded by scr)
is not in the CONTEXT vocabulary. A screen number of 0 will suppress loading of the
current Forth screen if the specified word has already been compiled.

SCR 68 -FILE
(=)

Clears (zeroes) the error code in bits 0-2 of the flag/status byte of the PAB
(Peripheral Access Block) pointed to by PAB-ADDR .

SCR 33 -SYNONYMS
()

Clears display screen by filling the screen image table with blanks. The screen image
table runs from SCRN_START to SCRN_END .

SCR 71 -FILE
()
Closes the file whose PAB (Peripheral Access Block) is pointed to by PAB-ADDR .
RESIDENT
(‘addr, addr, count ---)

Move count number of bytes from addr, to addr,. The contents of addr, is moved
first proceeding toward high memory.

SCR 74 -CODE
(=)
A defining word initializing the definition of a code (assembly) word.
SCR 61 -GRAPH
(spr, spr, tol --- flag)

Detects a coincidence between two given sprites within a specified tolerance limit zol.
A true flag indicates a coincidence.

SCR 61 -GRAPH
(- flag)

Detects a coincidence between the visible portions of any two sprites on the display
screen. A true flag indicates a coincidence.

SCR 61 -GRAPH
(dotcol dotrow spr tol --- flag)

Detects a coincidence between a specified sprite and a given point (dotcol,dotrow)
within a given tolerance limit fol. A true flag indicates a coincidence.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 111

coLp

COLOR

COLTAB

COMPILE

CONSTANT

CONTEXT

cos

RESIDENT
()

The COLD start procedure to adjust the dictionary pointer to the minimum standard
and restart via ABORT . May be called from the terminal to remove application
programs and restart. COLD calls BOOT prior to calling ABORT .

SCR 58 -GRAPH
(n, nyny---)

Causes a specified character set n, to have the given foreground #, and background #,
colors.

SCR 57 -GRAPH
(--- vaddr)

A constant whose value is the beginning VDP address of the color table. The default
value is 380h.

RESIDENT
()

When the word containing COMPILE executes, the execution address of the word
following COMPILE is copied (compiled) into the dictionary. This allows specific
compilation situations to be handled in addition to simply compiling an execution
address (which the interpreter already does).

RESIDENT
(n--)
A defining word used in the form:
n CONSTANT cccc

to create word cccc, with its parameter field containing n. When cccc is later
executed, it will push the value of n to the stack.

RESIDENT
(--- addr)

A user variable containing a pointer to the vocabulary within which dictionary
searches will first begin.

SCR 50 -FLOAT
(fi 1)

Calculates the cosine of £, radians and leaves the floating point result f; on the stack.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

112 D.2 TI Forth Word Descriptions

COUNT RESIDENT
(addr, --- addr,n)
Leave the byte address addr, and byte count n of a message text beginning at addr,.
It is presumed that the first byte at addr, contains the text byte count and the actual
text starts with the second byte. Typically, COUNT is followed by TYPE .

CR RESIDENT
()
Transmit a carriage return and a line feed to the selected output device.

CREATE RESIDENT
(=)
A defining word used in the form:

CREATE cccc

by such words as CODE and CONSTANT to create a dictionary header for a Forth
definition. The code field contains the address of the word’s parameter field. The
new word is created in the CURRENT vocabulary.

CsP RESIDENT
(--- addr)
A user variable temporarily storing the stack pointer position for compilation error
checking.

CURPOS RESIDENT
(--- addr)
A user variable that stores the current VDP (Visual Display Processor) cursor
position.

CURRENT RESIDENT
(--- addr)
A user variable pointing to the vocabulary into which new definitions will be
compiled.

D+ RESIDENT
(d,d,---dy)
Leave the double number sum of two double numbers (d; =d, + d,).

D+- RESIDENT
(dyn--d,)
Apply the sign of n to the double number d,, leaving it as d,.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 113

D. RESIDENT
(d--)
Print a signed double number from a 32-bit two’s complement value d. The high-
order 16 bits are most accessible on the stack. Conversion is performed according to
the current BASE . A blank follows. Pronounced “d dot”.

D.R RESIDENT
(dn--)
Print a signed double number d right-aligned in a field » characters wide.

DABS RESIDENT
(dy-—-d,)
Leave the absolute value d, of a double number d,.

DCOLOR RESIDENT
(--- addr)
A variable which contains the dot-color information used by DOT . Its value may be a
two-digit HEX number which defines the foreground and background color, or it may
be -1 which means no color information is changed in the VDP (Visual Display
Processor).

DDOT SCR 63 -GRAPH
(dotcol dotrow --- b vaddr)
The assembly code routine called by DOT . It expects a dot column and a dot row on
the stack and returns a byte b with only one bit set and a VDP address vaddr. The
dot referenced by (dotcol,dotrow) is translated by ddot to the address vaddr of the
byte containing it and a mask b that locates the dot within the byte. [Editor’s Note:
The original glossary entry was missing b and its description.]

DECIMAL RESIDENT
(=)
Set the numeric conversion BASE for decimal input/output.

DEFINITIONS RESIDENT

(—)
Used in the form:
cccc DEFINITIONS

Set the CURRENT vocabulary to the CONTEXT vocabulary. In the example, executing
vocabulary name cccc makes it the CONTEXT vocabulary and executing
DEFINITIONS makes both specify vocabulary cccc .

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

114 D.2 TI Forth Word Descriptions

DELALL SCR 61 -GRAPH
()
Delete all sprites.

DELSPR SCR 61 -GRAPH
(spr—)
Delete the specified sprite.

DIGIT RESIDENT

(char n, --- false | n, true)

Convert the ASCII character char (using number base #,) to its binary equivalent #,,
accompanied by a true flag. If the conversion is invalid, leave only a false flag. For
example, DECIMAL 53 10 DIGIT will leave 5 1 on the stack because 53 is the ASCII
code for ‘5’ and is a legitimate digit in base 10. On the other hand, DECIMAL 74 16
DIGIT will leave only @ on the stack because 74 is the ASCII code for ‘J’ and is not a
legitimate digit in base 16. However, DECIMAL 74 20 DIGIT will leave 19 1 on the
stack because ‘J’ is a legitimate digit in base 20.

DISK_BUF RESIDENT
(---addr)
A user variable that points to the first byte in VDP RAM of the 1K disk buffer.
DISK-HEAD SCR 40 -COPY
(=)

Writes a disk header on Forth screen 0 that makes the disk compatible with the TI
99/4A Disk Manager and with TI BASIC.

DISK_HI RESIDENT
(- addr)

A user variable which contains the Forth screen number immediately above the Forth
screen range wherein screen writes are permitted.

DISK_LO RESIDENT
(- addr)

A user variable which contains the first Forth screen number of the range wherein
disk writes are permitted.

DISK_SIZE RESIDENT
(--- addr)
A user variable whose value is the number of Forth screens logically assigned to a
diskette.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 115

DLITERAL

DLT

DMINUS

DMODE

DO

DOES>

RESIDENT
Compilation: (d ---) Runtime: (---d) Interpretation: (---)
Same behavior as LITERAL, g.v., except for a double number d
SCR 71 -FILE
(=)

The file 1/O routine that deletes the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

RESIDENT
(d1 T dz)
Convert d, to its double number two’s complement d,.

SCR 63 -GRAPH
(--- addr)

A variable that determines which dot mode is currently in effect. A DMODE value of 0
indicates DRAW mode, a value of 1 indicates UNDRAW mode, and a value of 2
indicates DOT-TOGGLE mode. This variable is set by the DRAW , UNDRAW and DTOG
words.

RESIDENT
Compilation: (addr n ---) Runtime: (n, n, ---)
Occurs in a colon-definition in the form:
DO .. LOOP
DO .. +LOOP

When compiling within the colon-definition, DO compiles (DO) , leaving the
following address addr and n for later error checking.

At run time, DO begins a sequence with repetitive execution controlled by a loop limit
n, and an index with initial value n,. DO removes these from the stack. Upon
reaching LOOP , the index is incremented by one. Until the new index equals or
exceeds the limit, execution loops back to just after DO, otherwise the loop
parameters are discarded and execution continues ahead. Both n, and n, are
determined at runtime and may be the result of other operations. Within a loop, I
will copy the current value of the index to the stack. See I, LOOP, +LOOP and
LEAVE .

RESIDENT
()
A word which defines the runtime action within a high-level defining word. DOES>

alters the code field and first parameter of the new word to execute the sequence of
compiled word addresses following DOES> . It is always used in combination with

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

116 D.2 TI Forth Word Descriptions
<BUILDS . When the DOES> part executes it begins with the address of the first
parameter of the new word on the stack. This allows interpretation using this area or
its contents. Typical uses include the Forth assembler, multidimensional arrays and
compiler generation.

DOT SCR 63 -GRAPH
(dotcol dotrow ---)

Plots a dot at (dotcol,dotrow) in whatever mode is selected by DMODE and in
whatever color is selected by DCOLOR .

DP RESIDENT
(--- addr)

A user variable, the dictionary pointer, which contains the address of the next free
memory above the dictionary. The value may be read by HERE and altered by
ALLOT .

DPL RESIDENT
(--- addr)

A user variable containing the number of digits to the right of the decimal point on
double integer input. It may also be used to hold output column location of a decimal
point in user-generated formatting. The default value on single number input is -1.

DRO DR1 DR2 RESIDENT
(—)

Command to select disk drives by presetting OFFSET . The contents of OFFSET is
added to the block number in BLOCK to allow for this selection. OFFSET is
suppressed for error text so that it may always originate from drive 0.

DRAW SCR 63 -GRAPH
()

Sets DMODE equal to 0. This means that dots are plotted in the ‘on’ state.

DRIVE RESIDENT
(n--)

Adjusts OFFSET so that the drive number on the stack becomes the first drive in the
system.

DROP RESIDENT
(n---)

Drop the top number from the stack.
ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 117

DSPLY SCR 69 -FILE
()
Assigns the attribute DISPLAY to the file pointed to by PAB-ADDR .

DSRLNK SCR 33 -SYNONYMS
(=)

Links a Forth program to any Device Service Routine (DSR) in ROM. Before this
instruction may be used, a PAB must be set up in VDP RAM.

DTEST SCR 39 -COPY
()
Performs a non-destructive test of the disk in DRO by attempting to read each Forth
screen.

DTOG SCR 63 -GRAPH
()

Sets DMODE equal to 2. This means that each dot plotted takes on the opposite state
as the dot currently at that location.

DUMP SCR 43 -DUMP
(addrn ---)

Print the contents of » memory locations beginning at addr. Both addresses and
contents are shown in hexadecimal notation. See PAUSE .

DUP RESIDENT
(n-—-nn)
Duplicates the value on the stack.

DXY SCR 59 -GRAPH

(dotcol, dotrow, dotcol, dotrow, --- n, n,)

Places on the stack the square of the x distance 7, and the square of the y distance n,
between the points (dotco!l,,dotrow,) and (dotcol,,dotrow,).

ECOUNT RESIDENT
(--- addr)
A user variable that contains an error count. This is used to prevent error recursion.
ED@ (EDITORI Vocabulary) SCR 38 -EDITOR
(=)

Brings you back into the 40-column editor on the last Forth screen you edited. This
screen is pointed to by SCR. Must be in Text mode.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

118 D.2 TI Forth Word Descriptions

ED@ (EDITOR?2 Vocabulary) SCR 29 -64 SUPPORT
()

Brings you back into the 64-column editor on the last Forth screen you edited. This
screen is pointed to by SCR .

EDIT (EDITORI Vocabulary) SCR 38 -EDITOR
(scr---)

Brings you into the 40-column editor on the specified Forth screen. Must be in Text

mode.
EDIT (EDITOR?2 Vocabulary) SCR 29 -64SUPPORT
(scr---)

Brings you into the 64-column editor on the specified Forth screen.
ELSE RESIDENT
Compilation: (addr, n, --- addr, n,) Runtime: (---)
Occurs within a colon-definition in the form:
IF .. ELSE .. ENDIF

At compile-time, ELSE emplaces BRANCH , reserving a branch offset and leaves the
address addr, and n, for error testing. ELSE also resolves the pending forward from

IF by calculating the offset from addr, to HERE and storing it at addr,.

At runtime, ELSE executes after the true part following IF . ELSE forces execution
to skip over the following false part and resume execution after ENDIF . It has no
stack effect.

EMIT RESIDENT
(char ---)

Transmit ASCII character char to the selected output device. OUT is incremented for
each character output.

EMIT8 RESIDENT
(char ---)

Transmit an 8-bit character char to the selected output device. OUT is incremented
for each character output.

EMPTY -BUFFERS RESIDENT
(=)

Mark all block buffers as empty, not necessarily affecting the contents. Updated
blocks are not written to the disk. This is also an initialization procedure before first
use of the disk.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 119

ENCLOSE RESIDENT
(addr, char --- addr, n, n, n;)
The text scanning primitive used by WORD . From the text address addr, and an
ASCII-delimiting character char, is determined the byte offset n, to the first non-
delimiter character, the offset #, to the delimiter after the text and the offset n, to the
first character not included. This procedure will not process past an ASCII ‘null’ (0),
treating it as an unconditional delimiter.

END RESIDENT
(flag---)
This is an alias or duplicate definition for UNTIL .

ENDCASE RESIDENT
(1)
Terminates the CASE construct and, if actually executed at runtime because all
intervening OF .. ENDOF clauses failed, removes the number # left on the stack. See
CASE .

ENDIF RESIDENT
Compilation: (addrn---)
Occurs in a colon-definition in the form:

IF .. ENDIF
IF .. ELSE .. ENDIF

AT runtime, ENDIF serves only as the destination of a forward branch from IF or
ELSE . It marks the conclusion of the conditional structure. THEN is another name
for ENDIF . Both names are supported in fig-Forth. See also IF and ELSE .
At compile-time, ENDIF computes the forward branch offset from addr to HERE and
stores it at addr. # is used for error tests.

ENDOF RESIDENT
()
Terminates the OF construct within the CASE construct. If executed at runtime,
causes execution to proceed just beyond ENDCASE . See OF .

ERASE RESIDENT
(addr n---)
Clear n bytes of memory to zero starting at addr.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

120

D.2 TI Forth Word Descriptions

ERROR

EXECUTE

EXP

EXPECT

F!

F*

RESIDENT
(ny---n, ny)

ERROR processes error notification and restarts the interpreter. WARNING is first
examined. If WARNING < 1, (ABORT) is executed. The sole action of (ABORT) is to
execute ABORT . This allows the user to (cautiously!) modify this behavior by
redefining (ABORT) . ABORT clears the stacks and executes QUIT, which stops
compilation and restarts the interpreter. If WARNING > O, ERROR leaves the contents
of IN n, and BLK 7, on the stack to assist in determining the location of the error. If

WARNING > 0, ERROR prints the text of line n,, relative to Forth screen 4 of drive 0. If
WARNING = 0, ERROR prints 7, as an error number (as in a non-disk installation). The

last thing ERROR does is to execute QUIT , which, as above, stops compilation and
restarts the interpreter.

RESIDENT
(cfa)

Execute the definition whose code field address is on the stack. The code field
address is also called the compilation address.

SCR 50 -FLOAT
(/i 1)

Raises e to the power specified by the floating point number f; on the stack and
leaves the result £, on the stack.

RESIDENT
(‘addr count ---)

Transfer characters from the terminal to addr until <ENTER> or count characters have
been received. One or more nulls are added at the end of the text.

SCR 45 -FLOAT
(faddr---)

Stores a floating point number f into the 4 words (cells) beginning with the specified
address.

SCR 46 -FLOAT
(fih=1)

Multiplies the top two floating point numbers on the stack and leaves the result on the

stack. f, * f, =1,

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 121

F+

F->S

F-D"

F.R

F/

FO<

Fo=

SCR 46 -FLOAT
(fifo—15)

Adds the top two floating point numbers on the stack and places the result on the

stack. f, * £, =1,.

SCR 46 -FLOAT
Nh—1)
Subtracts £, from f, and places the result on the stack (f, —f, =f5)-

SCR 46 -FLOAT
(f---n)

Converts a floating point number f on the parameter stack into a single precision
number 7.

SCR 70 -FILE
()

Expects a file descriptor ending with a " to follow. This instruction places the file
descriptor in the PAB (Peripheral Access Block) pointed to by PAB-ADDR .

SCR 48 -FLOAT
f--)
Prints a floating point number in BASIC format to the output device.

SCR 48 -FLOAT

(fn---)

Prints the floating point number fin BASIC format right justified in a field of width
n.

SCR 46 -FLOAT
NfoF5)
Divides f, by f, and leaves the floating point quotient f; on the stack. f;/f, =f..

SCR 49 -FLOAT
(f---flag)

Compares the floating point number f'on the stack to 0. If it is less than 0, a true flag
is left on the stack, else a false flag is left.

SCR 49 -FLOAT
(f--flag)

Compares the floating point number f on the stack to 0. If it is equal to 0, a true flag
is left on the stack, else a false flag is left.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

122 D.2 TI Forth Word Descriptions

F< SCR 49 -FLOAT
(N /o - flag)
Leaves a true flag if f; <f,, else leaves a false flag.

F= SCR 49 -FLOAT
(fifo = flag)
Leaves a true flag if f; =1, else leaves a false flag.

F> SCR 49 -FLOAT
(N1 /o - flag)
Leaves a flag if f, > f,, else leaves a false flag.

Fe SCR 45 -FLOAT
(addr ---f)
Retrieves the floating point contents f of the given address (4 words) and places it on
the stack.

FAC SCR 45 -FLOAT
(---addr)
A constant which contains the address of the FAC register.

FAC->S SCR 46 -FLOAT
(-—-n)
Converts a floating point number in FAC to a single precision number and places it on
the parameter stack.

FAC> SCR 45 -FLOAT
(1)
Brings a floating point number ffrom FAC to the stack.

FAC>ARG SCR 46 -FLOAT
()
Moves a floating point number from FAC into ARG .

FADD SCR 45 -FLOAT

()

Adds the floating point number in FAC to the floating point number in ARG and leaves
the result in FAC .

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 123

FDIV

FDROP

FDUP

FENCE

FF.

FF.R

FILE

SCR 45 -FLOAT
()

Divides the floating point number in FAC by the floating point number in ARG leaving
the quotient in FAC .

SCR 45 -FLOAT
(/=)
Drops the top floating point number f from the stack.

SCR 45 -FLOAT
(f-=-11)
Duplicates the top floating point number fon the stack.

RESIDENT

(--- addr)

A user variable containing an address (usually the NFA of a Forth word) below
which FORGETting is trapped. To FORGET below this point the user must alter the
contents of FENCE . It is possible to set the value of FENCE to a value that is actually
less than the address of the end of the last word in the core dictionary (TASK) such
that UNFORGETABLE [sic] will report false; however, FORGET will still trap that error.

SCR 48 -FLOAT
(fn ny,-—)

Prints the floating point number f with #, digits following the decimal point and a
maximum of 7, digits.

SCR 48 -FLOAT
(f ny ny ny-—)

Prints the floating point number f, with n, digits following the decimal point, right
justified in a field of width n; with a maximum of », digits.

SCR 68 -FILE
(vaddr, addr vaddr, ---)

A defining word which permits you to create a word by which a file will be known.
You must place on the stack the PAB-ADDR , PAB-BUF and PAB-VBUF addresses you
wish to be associated with the file.

Used in the form:

vaddr, addr vaddr, FILE cccc

When cccc executes, PAB-ADDR , PAB-BUF and PAB-VBUF are set to vaddr,, addr
and vaddr,, respectively.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

124 D.2 TI Forth Word Descriptions

FILL RESIDENT
(addr count b---)
Fill memory beginning at addr with count bytes of byte b.

FIRST RESIDENT
(---addr)
A constant that leaves the address of the first (lowest) block buffer.

FIRST$ RESIDENT
(---addr)
A user variable which contains the first byte of the disk buffer area.

FLD RESIDENT
(--- addr)
A user variable for control of number output field width. Presently unused in fig-
Forth and TI Forth.

FLERR SCR 49 -FLOAT
(= n)
Returns on the stack the contents 7 of the floating point status register (8354h).

FLUSH RESIDENT
(=)
Writes to disk all disk buffers that have been marked as updated.

FMUL SCR 45 -FLOAT
()
Multiplies the floating point number in FAC with the floating point number in ARG
leaving the product in FAC .

FORGET RESIDENT

()
Executed in the form:
FORGET cccc

Deletes the definition named cccc from the dictionary along with all dictionary
entries physically following it.

FORGET first checks the LFA of cccc to see if it is lower than the address in FENCE .
If it is not, FORGET then checks whether it is lower than the address of the last byte of
the core dictionary. If it is not lower than either of these addresses, FORGET updates
HERE to the LFA of cccc, effectively deleting the desired part of the dictionary.
Otherwise, an appropriate error message is displayed.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 125

FORMAT -DISK SCR 33 -SYNONYMS

(n-)

Initializes the disk in DRO (n = 0), DR1 (r = 1) or DR2 (n = 2) for use with the Forth
system. Caution: All data on the disk will be destroyed. Also, disks initialized by

the Disk Manager may be used without any changes. Drive number » must be 0, 1 or
2.

FORTH RESIDENT
()
The name of the primary vocabulary. Execution makes FORTH the CONTEXT
vocabulary. Until additional user vocabularies are defined, new user definitions
become a part of FORTH because it is at that point also the CURRENT vocabulary.
FORTH is immediate, so it will execute during the creation of a colon definition to
select this vocabulary at compile time.

FORTH-COPY SCR 39 -COPY
(=)
Copies the entire disk in DR1 onto the disk in DRO.

FORTH_LINK RESIDENT
(---addr)
A user variable used for vocabulary linkage.

FOVER SCR 45 -FLOAT
N L—f h)
Copies the second floating point number on the stack to the top of the stack.

FRND SCR 46 FLOAT
(/)
Generates a pseudo-random floating point number greater than or equal to 0 and less
than 1.

FSUB SCR 45 -FLOAT
()
Subtracts the floating point number in ARG from the number in FAC and leaves the
result in FAC .

FSWAP SCR 45 -FLOAT

N L—hh)

Swaps the top two floating point numbers on the stack.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

126 D.2 TI Forth Word Descriptions

FXD SCR 68 -FILE
()
Assigns the attribute FIXED to the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

GCHAR SCR 58 -GRAPH
(col row --- char)
Returns on the stack the ASCII code char of the character currently at (col,row).
Note: Rows and columns are numbered from 0.

GET-FLAG SCR 68 -FILE
(---0)
Retrieves the flag byte b from the current PAB and places it on the stack.

GOTOXY RESIDENT
(col row ---)
Places the cursor at the designated column col and row row position. Note: Rows
and columns are numbered from 0.

GPLLNK SCR 33 -SYNONYMS
(addr ---)
Links a Forth program to the Graphics Programming Language (GPL) routine located
at the given address.

GRAPHICS SCR 52 -GRAPH1
()
Converts from present display screen mode into standard Graphics mode
configurations.

GRAPHICS2 SCR 54 -GRAPH2
()
Converts from present Forth screen mode into standard Graphics2 mode
configuration.

HCHAR SCR 57 -GRAPH
(col row count char ---)
Prints a horizontal stream of a specified character char beginning at (col,row) and
having a length char. Note: Rows and columns are numbered from 0.

HERE RESIDENT
(--- addr)
Leave the address of the next available dictionary location.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 127

HEX

HLD

HOLD

HONK

ID.

IF

RESIDENT
(—)
Set the numeric conversion base to sixteen (hexadecimal).

RESIDENT
(---addr)

A user variable that holds the address of the latest character of text during numeric
output conversion.

RESIDENT
(char ---)

Used between <# and #> to insert an ASCII character into a pictured numeric output
string, e.g., 2E HOLD will place a decimal point.

SCR 60 -GRAPH
()
Produces the sound associated with incorrect input.
RESIDENT
(~n)

Used within a DO loop to copy the loop index to the stack. Other use is
implementation dependent. I is a synonym for R.

RESIDENT
(nfa)
Print a definition’s name from its name field address nfa.
RESIDENT
Compilation: (--- addr n) Runtime: (flag ---)
Occurs in a colon definition in form:
IF (true part) .. ENDIF
IF (true part) .. ELSE (false part) .. ENDIF

At compile time, IF compiles @BRANCH and reserves space for an offset at addr;
addr and n are used later for resolution of the offset and error testing.

At runtime, IF selects execution based on a Boolean flag. If flag is true (non-zero),
execution continues ahead through the true part. If flag is false (zero), execution
skips to just after ELSE to execute the false part. After either part, execution resumes
after ENDIF . ELSE and its false part are optional. If missing, false execution skips
to just after ENDIF .

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

128

D.2 TI Forth Word Descriptions

IMMEDIATE

IN

INDEX

INPT

INT

RESIDENT
()

Mark the most recently made definition so that when encountered at compile time, it
will be executed rather than being compiled. i.e., the precedence bit in its header is
set. This method allows definitions to handle unusual compiling situations rather
than build them into the fundamental compiler. The user may force compilation of
an immediate definition by preceding it with [COMPILE] .

RESIDENT
(- addr)

A user variable containing the byte offset within the current input text buffer
(terminal or disk) from which the next text will be accepted. WORD uses and moves
the value of IN.

SCR 73 -PRINT
(ny ny---)

Prints to the terminal a list of the line #0 comments from Forth screen n, through
Forth screen n,. See PAUSE .

SCR 69 -FILE
()
Assigns the attribute INPUT to the file whose PAB is pointed to by PAB-ADDR .
SCR 50 -FLOAT
(fi 1)

Leaves the integer portion of a floating point number on the stack.

INTERPRET RESIDENT

INTLNK

()

The outer text interpreter, which sequentially executes or compiles text from the
input stream (terminal or disk) depending on STATE . If the word name cannot be
found after a search of CONTEXT and then CURRENT , it is converted into a number
according to the current base. That also failing, an error message echoing the name
with a “?” will be given. Text input will be taken according to the convention for
WORD . If a decimal point is found as part of a number, a double number value will
be left. The decimal point has no other purpose than to force this action. See
NUMBER .

RESIDENT
(--- addr)

A user variable which is a pointer to the Interrupt Service linkage.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 129

INTRNL

ISR

JOYST

KEY

KEY8

L/SCR

LATEST

SCR 69 -FILE
()
Assigns the attribute INTERNAL to the file whose PAB is pointed to by PAB-ADDR .
RESIDENT
(---addr)

A user variable that initially contains the address of the interrupt service linkage code
to install an Interrupt Service Routine. The user must modify ISR to contain the
CFA of the routine to be executed each 1/60 second. Next, the contents of 83C4h
must be modified to point to this address. Note that the interrupt service linkage code
address is also available in INTLNK .

RESIDENT
(~=-n)
Copies the loop index of the next outer loop to the stack.
SCR 60 -GRAPH
(n,---char n, ny)

Allows you to accept input from joystick #1 and the left side of the keyboard (n, = 1)
or from joystick #2 and the right side of the keyboard (n, = 2). Values returned are
the character code char of the key pressed, the x status n, and the y status n,.

RESIDENT
(--- char)
Leave the ASCII value of the next terminal key struck.

RESIDENT
(--- char)
Leave the 8-bit value of the next terminal key struck.

RESIDENT
(~=-n)
Returns on the stack the number of lines per Forth screen.

RESIDENT

(---nfa)

Leave the name field address nfa of the most recently defined word in the CURRENT
vocabulary. At compile time, this “latest” word will be the most recently compiled
word.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

130

D.2 TI Forth Word Descriptions

LD

LDCR

LEAVE

LFA

LIMIT

LIMITS

LINE

SCR 71 -FILE

(n-)

The file I/0 process to load a program file from a disk into VDP RAM. The
parameter n specifies the maximum number of bytes to be loaded and is usually the
size of the file on disk. The file’s PAB must be set up and be the current PAB, to
which PAB-ADDR points, before executing this word.

SCR 88
(n, n,addr---)

Performs a TMS9900 LDCR instruction. The CRU base address addr will be shifted
left one bit and stored in workspace register R12 prior to executing the TMS9900
LDCR instruction. The value #», is transferred to the CRU with a field width of n,
bits.

RESIDENT
()

Force termination of a DO loop at the next opportunity by setting the loop limit equal
to the current value of the index. The index itself remains unchanged, and the
execution proceeds normally until LOOP or +LOOP is encountered.

RESIDENT
(pfa-—lfa)

Convert the parameter field address pfa of a dictionary definition to its link field
address [fa.

RESIDENT
(--- addr)

A constant which leaves the address addr just above the highest memory available
for a disk buffer.

RESIDENT
(--- addr)

A user variable that contains the address just above the highest memory available for
a disk buffer. The address of LIMITS is left on the stack.

SCR 64 -GRAPH
(dotcol, dotrow, dotcol, dotrow, ---)

The high resolution graphics routine which plots a line from (dotcol,,dotrow,) to
(dotcol,,dotrow,). DCOLOR and DMODE must be set before this instruction is used.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 131

LIST

LIT

LITERAL

LOAD

LOG

LOOP

RESIDENT
(scr---)
Lists the specified Forth screen to the output device. See PAUSE .

RESIDENT
(= n)

Within a colon-definition, LIT is automatically compiled before each 16-bit literal
number encountered in input text. Later execution of LIT causes the contents of the
next dictionary address to be pushed to the stack.

RESIDENT
Compilation: (# ---) Runtime: (--- n) Interpretation: (---)

During compilation, compiles the stack value n as a 16-bit literal. This will execute
during a colon definition. The intended use is:

: xxx [calculation] LITERAL ;

Compilation is suspended for the compile-time calculation of a value. Compilation is
resumed and LITERAL compiles this value.

At runtime, 7 is pushed to the stack. Interpretation of LITERAL does nothing, unlike
other compiling words.

RESIDENT
(1)

Begin interpretation of Forth screen n. Loading will terminate at the end of the Forth
screenorat ;S. See ;Sand -->.

SCR 50 -FLOAT
(/i 1)

The floating point operation which returns the natural logarithm f; of the floating
point number £, on the stack.

RESIDENT
Compilation: (addrn---)
Occurs in a colon definition in the form:
DO .. LOOP

At runtime, LOOP selectively controls branching back to the corresponding DO based
on the loop index and limit. The loop index is incremented by one and compared to
the limit. The branch back to DO occurs until the index equals or exceeds the limit.
At that time, the parameters are discarded and execution continues ahead.

At compile time, LOOP compiles (LOOP) and uses addr to calculate an offset to DO .
n is used for error testing.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

132 D.2 TI Forth Word Descriptions

M* RESIDENT
(n,n,---d)
A mixed magnitude math operation that leaves the double number signed product d
of two signed numbers, #, and n,.

M/ RESIDENT
(d n ---n, ny)
A mixed magnitude math operator that leaves the signed remainder », and signed
quotient 7n,, from a double number dividend 4 and divisor n,. The remainder takes its
sign from the dividend.

M/MOD RESIDENT
(ud, u,---u; ud,)
An unsigned mixed magnitude math operation that leaves an unsigned double
quotient ud, and a single remainder u,, from a double dividend ud, and a single
divisor u,.

MAGNIFY SCR 60 -GRAPH
(ny--)
Alters the sprite magnification factor to be n,. The value of n, must be 0, 1, 2 or 3.

MAX RESIDENT
(n, ny---ny)
Leave the greater n, of the two numbers, #, and n,.

MCHAR SCR 62 -GRAPH
(n col row---)
Places a square of color n at (col,row). Used in multicolor mode.

MENU SCR 20 BOOT SCR
(=)
Displays the available Load Options.

MESSAGE RESIDENT

(n--)

Print on the selected output device the text of line » relative to screen 4 of drive 0.
The value of 7 may be positive or negative. MESSAGE may be used to print incidental
text such as report headers. If WARNING = 0, the message will simply be printed as a
number (disk unavailable).

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 133

MIN

MINIT

MINUS

MOD

MON

MOTION

MOVE

MULTI

MYSELF

RESIDENT
(ny ny---ny)
Leave the smaller 7, of the two numbers (n, and #,).

SCR 62 -GRAPH

()
Initializes the monitor screen for use with MCHAR .
RESIDENT
(n,—n)
Leave the two’s complement 7, of a number #,.
RESIDENT

(n, ny---rem)
Leave the remainder rem of n,/n,, with the same sign as n,.
SCR 33 -SYNONYMS
()
Exit to the TI 99/4A color bar display screen.
SCR 59 -GRAPH
(n, n, spr---)
Assigns a horizontal 7, and vertical n, velocity to the specified sprite spr.
RESIDENT
(addr, addr, n---)

Move the contents of » memory cells (16-bit contents) beginning at addr, into n cells
beginning at addr,. The contents of addr, is moved first.

SCR 53 -GRAPH
(=)

Converts from present display screen mode into standard Multicolor mode
configuration.

RESIDENT
()

Used in a colon definition. Places the code field address (CFA) of a word into its
own definition. This permits recursion.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

134 D.2 TI Forth Word Descriptions

NFA RESIDENT
(pfa - nfa)
Convert the parameter field address pfa of a definition to its name field address nfa.

NOP RESIDENT
(=)
A do-nothing instruction. NOP is useful for patching as in assembly code.

NUMBER RESIDENT
(addr---d)
Convert a character string left at addr with the character count in the first byte, to a
signed double number d , using the current numeric base. If a decimal point is
encountered in the text, its position will be given in DPL , but no other effect occurs.
If numeric conversion is not possible, an error message will be given.

OF RESIDENT
(n—n])
Initiates the OF .. ENDOF construct inside of the CASE construct. » is compared to
the value which was on top of the stack when CASE was executed. If the numbers are
identical, the words between OF and ENDOF will be executed. Otherwise, n is put
back on the stack. See CASE .

OFFSET RESIDENT
(--- addr)
A user variable which may contain a block offset to disk drives. The contents of
OFFSET is added to the stack number by BLOCK . Messages issued by MESSAGE are
independent of OFFSET . See BLOCK , DRO and MESSAGE .

OPN SCR 71 -FILE
()
Opens the file whose PAB is pointed to by PAB-ADDR .

OR RESIDENT
(n, ny--—-ny)
Leave the bit-wise logical OR r, of two 16-bit values, n, and n,.

ouT RESIDENT

(- addr)

A user variable that contains a value incremented by EMIT and EMIT8 . The user
may alter and examine OUT to control display formatting.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 135

OUTPT

OVER

PAB-ADDR

PAB-BUF

PAB-VBUF

PABS

PAD

PAUSE

SCR 69 -FILE
()
Assigns the attribute OUTPUT to the file whose PAB is pointed to by PAB-ADDR .
RESIDENT
(n, ny-—-n, n, n;)
Copy the second stack value 7, to the top of the stack.
SCR 68 -FILE

(--- vaddr)

A variable containing the VDP address of the first byte of the current PAB
(Peripheral Access Block).

SCR 68 -FILE
(--- addr)

A variable which holds the address of the area in CPU RAM used as the source or
destination of the data to be transferred to/from a file. This is a file I/O word.

SCR 68 -FILE
(--- vaddr)

A variable pointing to a VDP RAM buffer which serves as a temporary buffer when
transferring data to/from a file. The VDP address stored in PAB-VBUFF is also stored
in the file’s PAB.

RESIDENT
(--- vaddr)

A user variable which points to a region in VDP RAM, which has been set aside for
creating PABs.

RESIDENT
(- addr)

Leave the address of the text output buffer, which is a fixed offset (68 bytes in TI
Forth) above HERE . Every time HERE changes, PAD is updated.

RESIDENT
(-—-flag)

The words LIST , INDEX , DUMP and VLIST all call the word PAUSE . PAUSE allows
the user to temporarily halt the output by pressing any key. Pressing another key will
allow continuation. To exit one of these routines prematurely, press <BREAK>
(<CLEAR> or <FCTN+,>).

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

136 D.2 TI Forth Word Descriptions

PDT SCR 57 -GRAPH
(--- vaddr)
A constant which contains the VDP address of the Pattern Descriptor Table. Default
value is 800h.

PFA RESIDENT
(nfa - pfa)
Convert the name field address nfa of a compiled definition to its parameter field
address pfa.

PI SCR 50 -FLOAT
(1)
A floating point approximation of w to 13 significant figures. (3.141592653590)

PREV RESIDENT
(---addr)
A user variable containing the address of the disk buffer most recently referenced.
The UPDATE command marks this buffer to be later written to disk.

PUT-FLAG SCR 68 -FILE
(b)
Writes the flag byte b into the appropriate PAB referenced by PAB-ADDR .

QUERY RESIDENT
()
Input 80 characters of text (or until <ENTER> is pressed) from the operator’s terminal.
Text is positioned at the address contained in TIB with IN set to 0.

QUIT RESIDENT
()
Clear the return stack, stop compilation and return control to the operator’s terminal.
No message is given, including the usual “ok”.

R RESIDENT
(-—-n) (Rin--n)
Copy the top of the return stack to the parameter stack.

R# RESIDENT

(--- addr)

A user variable which may contain the location of an editing cursor or other file-
related function.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 137

R->BASE

R/W

RO

R>

RANDOMIZE

RD

RDISK

REC-LEN

RESIDENT
(=) (Rin-)
Restore the current base from the return stack. See BASE->R .

RESIDENT
(addr n, flag---)

The fig-Forth standard disk read/write linkage. The source or destination block
buffer address is addr, n, is the sequential number of the referenced block and flag

indicates whether the operation is write (flag = 0) or read (flag = 1). R/W determines
the location on mass storage, performs the read/write and error checking.

RESIDENT
(- addr)

A user variable containing the initial location of the return stack. Pronounced
“r zero”. See RP! .

RESIDENT
(-—n) (Rin--)

Remove the top value from the return stack and leave it on the parameter stack. See
>RandR.

SCR 33 -SYNONYMS
(—)
Creates an unpredictable seed for the random number generator.
SCR 71 -FILE
(--- count)

The file I/O instruction that reads from the current PAB. This instruction uses
PAB-BUF and PAB-VBUF .

RESIDENT
(addr n, n,---ny)

The primitive routine that performs disk reads. The address where the block is to be
written in CPU RAM is addr. The block number #,, the number of bytes per block is

n, and n, is the returned error code.
SCR 69 -FILE
(b-)

Stores the length b of the record for the upcoming write into the appropriate byte in
the current PAB.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

138 D.2 TI Forth Word Descriptions
REC-NO SCR 69 -FILE
(n---)
Writes a record number # into the appropriate location in the current PAB.
REPEAT RESIDENT
Compilation: (addr n---)
Used within a colon-definition in the form:
BEGIN .. WHILE .. REPEAT
At runtime, REPEAT forces an unconditional branch back to just after the
corresponding BEGIN .
At compile-time, REPEAT compiles BRANCH and the offset from HERE to addr. n is
used for error testing.
RLTV SCR 69 -FILE
()
Assigns the attribute RELATIVE to the file whose PAB is pointed to by PAB-ADDR .
RND SCR 33 -SYNONYMS
(n,-—-ny)
Generates a positive random integer 7, greater than or equal to 0 and less than #,.
RNDW SCR 33 -SYNONYMS
(-—-n)
Generates a random word. The value of the word may be positive or negative
depending on whether the sign bit is set.
ROT RESIDENT
(n, ny ny---n, ny n,)
Rotate the top three values on the stack, bringing the third #, to the top.
RP! RESIDENT
()
A procedure to initialize the return stack pointer from user variable RO .
RSTR SCR 71 -FILE

(1)

Restores the file whose PAB is pointed to by the current PAB to the specified record
number 7.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 139

S->D

S->F

S->FAC

SO

SATR

SBO

SBZ

SCOPY

RESIDENT

(n--d)
Sign-extend a single number 7 to form a double number d.

SCR 46 -FLOAT
(n---1)
Converts a single-precision number 7z on the stack to a floating point number f.

SCR 46 -FLOAT
(n--)

Takes a single-precision number # from the stack, converts it to floating point, and
leaves it in FAC.

RESIDENT
(- addr)

User variable that points to the base of the parameter stack. Pronounced “s zero”.
See SP! .

SCR 57 -GRAPH
(--- vaddr)

A constant whose value vaddr is the VDP address of the Sprite Attribute List.
Default value is 300h.

SCR 88 -CRU
(addr ---)

This word expects to find on the stack the CRU address addr of the bit to be set to 1.
SBO will put this address into workspace register R12, shift it left (double it) and
execute @ SBO, to effect setting the bit. See CRU documentation in the
Editor/Assembler Manual for more information.

SCR 88 -CRU
(addr —)

This word expects to find on the stack the CRU address addr of the bit to be reset to
0. SBZ will put this address into workspace register R12, shift it left (double it) and
execute @ SBZ, to effect resetting the bit. See CRU documentation in the
Editor/Assembler Manual for more information.

SCR 39 -COPY
(scry scry ---)

Copies the source Forth screen scr, to the destination Forth screen scr, on disk. Does
not destroy the source screen.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

140 D.2 TI Forth Word Descriptions

SCR RESIDENT
(---addr)
A user variable containing the Forth screen number most recently referenced by
LIST or EDIT.

SCREEN SCR 58 -GRAPH
(n--)

Changes the display screen color to the color specified n. The foreground (FG) and
background (BG) screen colors must be placed in the low-order byte of n, with FG
the high-order 4 bits and BG the low-order 4 bits, e.g., n =27 (1Bh) for black on light
yellow.

SCRN_END RESIDENT
(- addr)

A user variable containing the address addr of the byte immediately following the
last byte of the display screen image table to be used as the logical display screen.

SCRN_START RESIDENT
(- addr)

A user variable containing the address addr of the first byte of the display screen
image table to be used as the logical display screen.

SCRN_WIDTH RESIDENT
(--- addr)

A user variable which contains the number of characters that will fit across the
display screen. (32 or 40) Used by the display screen scroller.

SCRTCH SCR 71 -FILE
(n--)

Removes the specified record n from the RELATIVE file whose PAB is pointed to
by PAB-ADDR. [Editor's Note: This word should never be used. TI never
implemented this operation for files. It will a/ways result in a file I/O error message.]

SEED SCR 33 -SYNONYMS
(n--)
Places a new seed n into the random number generator.

SET-PAB SCR 68 -FILE
()

This instruction assumes that PAB-ADDR is set. It then zeroes out the PAB
(Peripheral Access Block) pointed to by PAB-ADDR and places the contents of PAB-
VBUF into the appropriate word of the PAB. This initializes the PAB.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 141

SETFL

SIGN

SIN

SLA

SLIT

SMASH

SCR 45 -FLOAT

(ffo)
Performs >FAC on f, and >ARG on f,.

RESIDENT
(nd-—d)

Stores a minus sign (ASCII 45 or 2Dh) at the current location in a converted numeric
output string in the text output buffer if n is negative. At the time # is evaluated, it is
discarded; but, double number J is maintained for continued conversion until #>
removes it from the stack. Must be used between <# and #>. Using SIGN implies
that d can be negative, which means that d should be used to produce n. You should
then replace d with its absolute value (|d|) on the stack by using DABS . This can be
done by pushing d to the stack and executing SWAP OVER DABS : (d --- n |d|) prior
to<# .. SIGN .. #>.

SCR 50 -FLOAT

(fi 1)

Finds the SIN f, of the floating point number f; on the stack and leaves the result f,
on the stack.

RESIDENT
(n, count --- n,)

Arithmetically shifts the number #, on the stack count bits to the left, leaving the
result n, on the stack. Shifting by count will be modulo 16 except when count = 0,

which causes 16 bits to be shifted. To create a word which does not perform a 16-bit
shift when count is zero, use the following definition for the same stack contents:

: SLAO -DUP IF SLA ENDIF ;
SCR 20 BOOT SCR

(--- addr)

SLIT is similar to LIT but acts on strings instead of numbers. SLIT places the
address addr of the string following it on the stack. It modifies the top of the return
stack to point to just after the string.

SCR 65 -64SUPPORT
(‘addr, count, n --- addr, vaddr count,)

The assembly code routine that formats a line of tiny characters. It expects the
address addr, of the line in memory, the number count, of characters per line, and the
line number #n to which it is to be written. It returns on the stack the line buffer
address addr,, a VDP address vaddr, and a character count count,. See CLIST and
CLINE.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

142 D.2 TI Forth Word Descriptions

SMOVE SCR 39 COPY
(scr, scr, count ---)
Copies count Forth screens beginning with the source Forth screen scr, to the
destination Forth screen scr,. Overlapping screen ranges may be specified without
detrimental effects.

SMTN SCR 57 -GRAPH
(--- vaddr)
A constant whose value is the VDP address of the Sprite Motion Table. Default
value is 780h.

SMUDGE RESIDENT
(=)
Used during word definition to toggle the smudge bit in a definition’s name field.
This prevents an uncompleted definition from being found during dictionary searches
until compilation is completed without error.

SP! RESIDENT
()
A procedure to initialize the parameter stack pointer from S0 , the user variable that
points to the base of the parameter stack.

SPa RESIDENT
(--- addr)
This word returns the address of the top of the stack as it was before SP@ was
executed,e.g.,1 2 SP@ @ . . . wouldtype2?21.

SPACE RESIDENT
(=)
Transmit a blank character (ASCII 32|20h) to the output device.

SPACES RESIDENT
(n-)
Transmit n blank characters (ASCII 32|20h) to the output device.

SPCHAR SCR 58 -GRAPH

(n, n,ny n, char ---)

Defines a character char in the Sprite Descriptor Table to have the pattern composed
of the 4 words (cells) on the stack.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 143

SPDTAB

SPLIT

SPLIT2

SPRCOL

SPRDIST

SPRDISTXY

SPRGET

SPRITE

SPRPAT

SCR 57 -GRAPH
(--- vaddr)

A constant whose value is the VDP address of the Sprite Descriptor Table. Default
value is 800h. Notice that this coincides with the Pattern Descriptor Table.

SCR 55 -SPLIT
()
Converts from present display screen mode into standard Split mode configuration.
SCR 55 -SPLIT
()
Converts from present display screen mode into standard Split2 mode configuration.
SCR 58 -GRAPH
(nspr---)
Changes color of the given sprite number spr to the color # specified.
SCR 60 -GRAPH
(spry spry---n)

Returns on the stack the square of the distance n between two specified sprites, spr,
and spr,. Distance is measured in pixels and the maximum distance that can be
detected accurately is 181 pixels.

SCR 60 -GRAPH
(dotcol dotrow spr --- n)

Places on the stack n, the square of the distance between the point (dotcol,dotrow)
and a given sprite spr. Distance is measured in pixels and the maximum distance that
can be detected accurately is 181 pixels.

SCR 59 -GRAPH
(spr --- dotcol dotrow)
Returns the dot column dotcol and dot row dotrow position of sprite spr.

SCR 59 -GRAPH
(dotcol dotrow n char spr ---)

Defines sprite number spr to have the specified location (dotcol,dotrow), color n, and
character pattern char. The size of the sprite will depend on the magnification factor.

SCR 59 -GRAPH
(char spr---)

Changes the character pattern of a given sprite spr to char.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

144

D.2 TI Forth Word Descriptions

SPRPUT

SONTL

SQR

SRA

SRC

SRL

SCR 59 -GRAPH
(dotcol dotrow spr ---)
Places a given sprite spr at location (dotcol,dotrow).
SCR 69 -FILE
()

Assigns the attribute SEQUENTIAL to the file whose PAB is pointed to by PAB-
ADDR .

SCR 50 -FLOAT
(fi 1)

Finds the square root of a floating point number f; and leaves the result f, on the
stack.

RESIDENT
(n, count --- n,)

Arithmetically shifts n, count bits to the right and leaves the result #, on the stack.

Shifting by count will be modulo 16 except when count = 0, which causes 16 bits to
be shifted. To create a word which does not perform a 16-bit shift when count is
zero, use the following definition for the same stack contents:

: SRAO -DUP IF SRA ENDIF ;

RESIDENT
(n, count --- n,)

Performs a circular right shift of count bits on #, leaving the result n, on the stack. If

count is 0, 16 bits are shifted. To create a word which does not perform a 16-bit shift
when count is zero, use the following definition for the same stack contents:

: SRCO -DUP IF SRC ENDIF ;

RESIDENT
(n, count --- n,)

Performs a logical right shift of count bits on n, and leaves the result 7, on the stack.
If count is 0, 16 bits are shifted. To create a word which does not perform a 16-bit
shift when count is zero, use the following definition for the same stack contents:

: SRLO -DUP IF SRL ENDIF ;

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 145

SSDT

STAT

STATE

STCR

STR

STR.

SV

SCR 58 -GRAPH
(vaddr ---)

Places the Sprite Descriptor Table at the specified VDP address vaddr and initializes
all sprite tables. The address given must be on an even 2K boundary. This
instruction must be executed before sprites can be used.

SCR 71 -FILE
(= b)

Reads the status of the current PAB and returns the status byte b to the stack. See the
Editor/Assembler Manual for the meaning of each bit of the status byte.

RESIDENT
(--- addr)

A user variable containing the compilation state. A non-zero value indicates
compilation. The value itself may be implementation dependent.

SCR 88
(n,addr ---n,)

Performs the TMS9900 STCR instruction. The field width is n,, the CRU base
address is addr, and the returned value is n,. The CRU base address will be shifted

left 1 bit and stored in workspace register R12 prior to executing the TMS9900
STCR instruction.

SCR 47 -FLOAT
(=)

Converts the number in the FAC to a string, which is placed in PAD. The string is in
BASIC format. Used by F. and F.R.

SCR 47 -FLOAT
(n,nyny---)

Converts the number in the FAC to a string which is placed in PAD. The maximum
number of output digits is #, (STR. places #n, in the byte at FAC+11). Calling STR.
with n, = 0 is identical to calling STR. The number of significant digits of output is
n, (STR. places n, in the byte at FAC+12). The number of digits to be output after
the decimal point is #, (STR. places n; in the byte at FAC+13). See the GPL STR
routine on page 254 in the Editor/Assembler Manual for more detail.

SCR 71 -FILE
(count ---)

Performs the file I/O save operation. The number of bytes count to be saved will be
the size of the file on disk. The file’s PAB must be set up and be the current PAB, to
which PAB-ADDR points, before executing this word.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

146

D.2 TI Forth Word Descriptions

SWAP

SWCH

SWPB

SYS$

SYSTEM

TAN

TASK

RESIDENT
(n ny---nyn;)
Exchange the top two values on the stack.
SCR 72 -PRINT
()

A special purpose word which permits EMIT to output characters to an RS232 device
rather than to the screen. See UNSWCH .

RESIDENT
(ny == ny)
Reverses the order of the two bytes in n, and leaves the new number as 7,.
RESIDENT
(--- addr)
A user variable that contains the address of the system support entry point.
RESIDENT
(1)

Calls the system synonyms. You must specify an offset » into a jump table for the
routine you wish to call. The offset » must be one of the predefined even numbers.
See system Forth screen 33 for offsets 0 — 26.

SCR 50 -FLOAT
(/i 1)

Finds the tangent of the floating point number (f, = angle in radians) on the stack and
leaves the result f..

RESIDENT
()

A no-operation word or null definition, TASK is the last word defined in the resident
Forth vocabulary of TI Forth and the last word that cannot be forgotten using
FORGET . Its definition is simply : TASK ; . Its address can be used to BSAVE a
personalized TI Forth system disk (see Chapter 11): * TASK 21 BSAVE (Be sure to
back up the original disk before trying this!). By redefining TASK at the beginning of
an application, you can mark the boundary between applications. By forgetting TASK
and re-compiling, an application can be discarded in its entirety. You will be able to
FORGET cach instance of the definition of TASK except the first one described above.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 147

B

TCHAR

TEXT

THEN

TIB

TOGGLE

TRACE

TRAVERSE

SCR 88 -CRU

(‘addr --- flag)

TB performs the TMS9900 TB instruction. The bit at CRU address addr is tested by
this instruction. Its value (flag = 1|0) is returned to the stack. The CRU base
address addr will be shifted left one bit and stored in workspace register R12 prior to
executing the TMS9900 TB instruction.

SCR 65 & 67 -64SUPPORT
(- addr)

Points to the array that holds the tiny character definitions for the 64-column editor.
See CLIST.

SCR 51 -TEXT

(=)
Converts from present display screen mode into standard Text mode configuration.

RESIDENT
(=)
An alias for ENDIF .

RESIDENT
(---addr)
A user variable containing the address of the terminal input buffer.

RESIDENT

(addrb---)
Complement (XOR) the contents of the byte at addr by the bit pattern of byte .

SCR 44 -TRACE
()

Forces the following colon definitions to be compiled in such a way that they can be
traced. See TRON , TROFF and UNTRACE .

RESIDENT
(addr, n --- addr,)

Traverse the name field of a fig-Forth variable-length name field. The starting point
addr, is the address of either the length byte or the last letter. If n = 1, the direction is
toward high memory; if n = -1, the direction is toward low memory. The resulting
address addr, points to the other end of the name.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

148

D.2 TI Forth Word Descriptions

TRIAD SCR 72 -PRINT
(scr---)
Display on the RS232 device the three Forth screens that include screen number scr,
beginning with a Forth screen evenly divisible by three. Output is suitable for source
text records and includes a reference line at the bottom taken from line 15 of screen
4: “TI FORTH --- a fig-FORTH extension”.

TRIADS SCR 73 -PRINT
(scr, scry ---)
May be thought of as a multiple TRIAD, g.v.. You must specify a Forth screen
range. TRIADS will execute TRIAD as many times as necessary to cover that range.

TROFF SCR 44 -TRACE
(=)
Once a routine has been compiled with the TRACE option, it may be executed with or
without a trace. To implement a trace, type TRON before execution. To execute
without a trace, type TROFF . See TRON , TRACE and UNTRACE .

TRON SCR 44 -TRACE
()
See TROFF .

TYPE RESIDENT
(addr count ---)
Transmit count characters from addr to the selected output device.

U RESIDENT
(-—-n)
Places the contents n of workspace register UP (R8) on the stack. Register U
contains the base address of the user variable area. This is quicker than executing U@
@, which accomplishes the same thing.

U* RESIDENT
(u, uy-—-ud)
Leave the unsigned double number product ud of two unsigned numbers, u, and u,.

u. RESIDENT
(u---)
Prints an unsigned number u to the output device.

ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 149

U.R RESIDENT
(un---)
Prints an unsigned number u right justified in a field of width ».

u/ RESIDENT
(ud u, --- rem quot)
Leave the unsigned remainder rem and unsigned quotient guot from the unsigned
double dividend ud and unsigned divisor u,.

ue RESIDENT
(--- addr)
A user variable that points to the base of the user variable area.

U< RESIDENT
(uy uy--flag)
Leaves a true flag if u, is less than u,, else leaves a false flag.

upD. RESIDENT
(ud)
Prints an unsigned double number ud to the output device.

UD.R RESIDENT
(ud n---)
Prints an unsigned double number ud right justified in a field of length #.

UNCONS$ RESIDENT
(--- addr)
A user variable which contains the base address of the user variable initial value
table, which is used to initialize the user variables at a COLD start.

UNDRAW SCR 62 -GRAPH
()
Sets DMODE to 1. This means that dots are plotted in the off mode.

UNFORGETABLE ([sic] RESIDENT

(addr --- flag)

Decides whether or not a word can be forgotten. A true flag is returned if the address
is not located between FENCE and HERE . Otherwise, a false flag is left. See
FORGET . It is possible to set the value of FENCE to a value that is actually less than
the address of the end of the last word in the core dictionary (TASK) such that
UNFORGETABLE [sic] will report false; however, FORGET will still trap that error.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

150 D.2 TI Forth Word Descriptions

UNSWCH SCR 72 -PRINT
()
Causes the computer to send output to the display screen instead of an RS232 device.
See SWCH .

UNTIL RESIDENT
Compilation: (addr n ---) Runtime: (flag ---)
Occurs within a colon-definition in the form:

BEGIN .. UNTIL

At compile-time, UNTIL compiles (@BRANCH) and an offset from HERE to addr.
Number 7 is used for error tests.
At runtime, UNTIL controls the conditional branch back to the corresponding
BEGIN . If flag is false, execution returns to just after BEGIN ; if frue, execution
continues ahead.

UNTRACE SCR 44 -TRACE
()
Colon definitions that have been compiled under the TRACE option must be
recompiled under the UNTRACE option to remove the tracing capability. TRACE and
UNTRACE can be used alternately to select words to be traced.

UPDATE RESIDENT
(—)
Marks the most recently referenced block pointed to by PREV as altered. The block
will subsequently be transferred automatically to disk should its buffer be required
for storage of a different block. See FLUSH .

UPDT SCR 69 -FILE
()
Assigns the attribute UPDATE to the file whose PAB is pointed to by PAB-ADDR .

USE RESIDENT
(--- addr)
A user variable containing the address of the block buffer to use next as the least
recently written.

USER RESIDENT
(n--)
A defining word used in the form:

n USER cccc
ASCII Collating Sequence: !" # $% &' () * +,-./ digits:; <=>? @ ALPHA[\]~ _"alpha{ | } ~

Appendix D The TI Forth Glossary 151

VAL

VAND

VARIABLE

VCHAR

VFILL

VLIST

which creates a user variable cccc. The parameter field of cccc contains » as a
fixed offset relative to the user variable base address pointed to by workspace register
UP (RS8) for this user variable. When cccc is later executed, it places the sum of its
offset and the user area base address on the stack as the storage address of that
particular variable. You should only use the even numbers 68h — 7Eh for n. You
should actually avoid 68h as well because the TI Forth boot screen (screen 3) uses
that offset for defining user variable VDPMDE , leaving 6Ah — 7Eh as the available
offsets—enough for 11 user variables.

SCR 47 -FLOAT
()

Causes the string at PAD to be converted into a floating point number and put into
the FAC. The string must have a leading length byte with no embedded blanks.

SCR 33 -SYNONYMS
(b vaddr ---)

Performs a logical AND on the byte at the specified VDP location vaddr and the
given byte b. The result byte is stored back into the VDP address.

RESIDENT
(n--)
A defining word used in the form:
n VARIABLE cccc

When VARIABLE is executed, it creates the definition cccc with its parameter field
initialized to n. When cccc is later executed, the address of its parameter field
(containing r) is left on the stack, so that a fetch or store may access this location.

SCR 57 -GRAPH
(col row count char ---)

Prints on the display screen a vertical stream of length count of the specified
character char. The first character of the stream is located at (col,row). Rows and
columns are numbered from 0 beginning at the upper left of the display screen.

SCR 33 -SYNONYMS
(vaddr count b ---)

Fills count locations beginning at the given VDP address vaddr with the specified
byte b.

SCR 43 -DUMP
()
Prints the names of all words defined in the CONTEXT vocabulary. See PAUSE .

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

152

D.2 TI Forth Word Descriptions

VMBR

VMBW

VOC-LINK

SCR 33 -SYNONYMS
(vaddr addr count ---)

Reads count bytes beginning at the given VDP address vaddr and places them at
addr.

SCR 33 -SYNONYMS
(addr vaddr count ---)
Writes count bytes from addr into VDP beginning at the given VDP address vaddr.
RESIDENT
(--- addr)

A user variable containing the address of a field in the definition of the most recently
created vocabulary. All vocabulary names are linked by these fields to allow control
for forgetting with FORGET through multiple vocabularies.

VOCABULARY RESIDENT

VOR

VRBL

VSBR

()
A defining word used in the form:
VOCABULARY cccc

to create a vocabulary definition cccc. Subsequent use of cccc will make it the
CONTEXT vocabulary which is searched first by INTERPRET . The sequence cccc
DEFINITIONS will also make cccc the CURRENT vocabulary into which new
definitions are placed.

cccc will be so chained as to include all definitions of the vocabulary in which cccc
is itself defined. All vocabularies ultimately chain to Forth. By convention,
vocabulary names are to be declared IMMEDIATE . See VOC-LINK .

SCR 33 -SYNONYMS
(b vaddr ---)

Performs a logical OR on the byte at the specified VDP address and the given byte b.
The result byte is stored back into the VDP address.

SCR 68 -FILE
(=)
Assigns the attribute VARIABLE to the file whose PAB is pointed to by PAB-ADDR .
SCR 33 -SYNONYMS
(vaddr ---b)

Reads a single byte from the given VDP address vaddr and places its value b on the
stack.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 153

VSBW

VWTR

VXOR

WARNING

WDISK

SCR 33 -SYNONYMS
(b vaddr ---)
Writes a single byte b into the given VDP address vaddr.

SCR 33 -SYNONYMS
(b n)
Writes the given byte b into the specified VDP write-only register 7.

SCR 33 -SYNONYMS
(b vaddr ---)

Performs a logical XOR on the byte at the specified VDP address vaddr and the
given byte . The result byte is stored back into the VDP address vaddr.

RESIDENT
(- addr)

A user variable initialized by COLD at system startup containing a value controlling
messages. If WARNING > 0, a disk is present and Forth screen 4 of drive 0 is the base
location for messages. If WARNING = 0, no disk is present and messages will be
presented by number. If WARNING < 0 when ERROR executes, ERROR will execute
(ABORT) , which can be redefined to execute a user-specified procedure instead of
the default ABORT . See MESSAGE , ERROR .

RESIDENT
(addr n, n,---ny)

The primitive routine which performs a disk write. The CPU RAM location of the
block to be written is addr. The block number is #,, the number of bytes per block is
n, and the returned error code is #,.

WHERE (EDITORI Vocabulary) SCR 38 -EDITOR

(ny ny-—-)

When an error occurs on a LOAD instruction, typing WHERE will bring you into the
40-column editor and place the cursor at the exact location of the error. WHERE
consumes the two numbers, #n, and n,, left on the stack by the LOAD error.

WHERE (EDITOR?2 Vocabulary) SCR 29 -64SUPPORT

(ny ny-—)

When an error occurs on a LOAD instruction, typing WHERE will bring you into the
64-column editor and place the cursor at the exact location of the error. WHERE
consumes the two numbers, #, and n,, left on the stack by the LOAD error.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

154

D.2 TI Forth Word Descriptions

WHILE

WIDTH

WLITERAL

WORD

WRT

RESIDENT
Compilation: (addr, n, --- addr, n, addr, n,) Runtime: (flag ---)
Occurs in a colon-definition in the form:
BEGIN .. WHILE (true part) .. REPEAT

At compile time, WHILE emplaces (OBRANCH) and leaves addr, of the reserved
offset. The stack values will be resolved by REPEAT .

At runtime, WHILE selects conditional execution based on flag. If flag is true (non-
zero), WHILE continues execution of the true part through to REPEAT , which then
branches back to BEGIN. If flag is false (zero), execution skips to just after
REPEAT , exiting the structure.

RESIDENT
(--- addr)

A user variable containing the maximum number of letters saved in the compilation
of a definition’s name. It must be 1 — 31, with a default value of 31. The name
character count and its natural characters are saved up to the value in WIDTH. The
value may be changed at any time within the above limits.

SCR 20 BOOT SCR

()

A compiling word which compiles SLIT and the string which follows WLITERAL
into the dictionary.

Used in the form: WLITERAL cccc
RESIDENT
(char ---)

Read the text characters from the input stream being interpreted until a delimiter char
is found, storing the packed character string beginning at the dictionary buffer HERE .
WORD leaves the character count in the first byte followed by the input characters and
ends with two or more blanks. Leading occurrences of char are ignored. If BLK is
zero, text is taken from the terminal input buffer, otherwise from the disk block
stored in BLK . See BLK , IN .

SCR 71 -FILE
(count ---)

Performs the file I/O write operation. You must specify the number of bytes count to
be written.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\]~

“alpha { | } ~

Appendix D The TI Forth Glossary 155

XMLLNK

XOR

[COMPILE]

message

SCR 33 -SYNONYMS
(addr ---)

Links a Forth program to a routine in ROM or to a routine located in the memory
expansion unit. A ROM address addr or XML vector must be specified as in the
Editor/Assembler Manual.

RESIDENT
(n,ny—ny)
Leave n,, the bitwise logical exclusive OR (XOR) of n, and n,.
RESIDENT
()
Used in a colon-definition in the form:
xxxx [words] more ;

Suspend compilation. The words after [are executed, not compiled. This allows
calculation or compilation exceptions before resuming compilation with 1. See
LITERAL and] .

RESIDENT
()
Used 1n a colon definition in the form:
: xxxx [COMPILE] FORTH ;

[COMPILE] will force the compilation of an immediate definition that would
otherwise execute during compilation. The above example will select the Forth
vocabulary when xxxx executes rather than at compile time.

RESIDENT
()
Resume compilation to the completion of a colon definition. See [.
SCR 50 -FLOAT

(N fo-f5)

Returns f; on the stack f, raised to the f, power. The operands must be floating point
numbers.

SCR 84
(=)

A replacement for MESSAGE that contains the error messages in memory instead of
on the disk. When Forth screen #84 is loaded, the error messages are compiled into
the space formerly occupied by the fifth disk buffer leaving only four working disk
buffers. MESSAGE is patched so that it now points to message.

ASCII Collating Sequence: !" #$% &' () * +,-./ digits:; <=>? @ ALPHR[\] A

“alpha { | } ~

156 Appendix E User Variables in TI Forth

Appendix E User Variables in Tl Forth

The purpose of this appendix is to detail the User Variables in TI Forth to assist in their
use and to provide the necessary information to change or add to this list as necessary. A
more comprehensive description of each of these variables is provided in Appendix D.
The table follows these comments in two layouts. The first is in address offset order and
the second is in alphabetical order by variable name.

The user may use even numbers 6Ah through 7Eh to create his/her own user variables.
See the definition of USER in Appendix D.

E.1 TI Forth User Variables (Address Offset Order)

Name Offset Initial Value Description

UCONS$ 6h Base of User Var initial value table
SO 8h Base of Stack

RO Ah Base of Return Stack

uo Ch Base of User Variables

TIiB Eh Terminal Input Buffer address
WIDTH 16h 31 Name length in dictionary

DP 12h Dictionary Pointer

SYS$ 14h Address of System Support
CURPOS 16h Cursor location in VDP RAM
INTLNK 18h Pointer to Interrupt Service Linkage
WARNING 1Ah 1 Message Control

C/L$ 1Ch 64 Characters per Line

FIRSTS 1Eh Beginning of Disk Buffers

LIMITS 20h End of Disk Buffers

B/BUF$ 22h 1024 Bytes per Buffer

B/SCR$ 24h 1 Blocks per Forth Screen

DISK_LO 26h 1 Low end Disk Fence

DISK_HI 28h 90 High end Disk Fence

DISK_SIZE 2Ah 90 Logical Disk Size in Forth Screens
DISK_BUF 2Ch 1000h VDP location of 1K Buffer

PABS 2Eh 4606h VDP location for PABs
SCRN_WIDTH 36h 40 Display Screen Width in Characters
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_END 34h 960 Display Screen Image End in VDP
ISR 36h Interrupt Service Pointer

ALTIN 38h 0 Alternate Input Pointer

ALTOUT 3Ah 0 Alternate Output Pointer

FENCE 3Ch Dictionary Fence

BLK 3Eh Block being interpreted

IN 46h Byte offset in text buffer

ouT 42h Incremented by EMIT

SCR 44h Last Forth Screen referenced

Appendix E User Variables in TI Forth 157

Name Offset Initial Value Description

OFFSET 46h Block offset to disks

CONTEXT 48h Pointer to Context Vocabulary
CURRENT 4Ah Pointer to Current Vocabulary
STATE 4Ch Compilation State

BASE 4Eh Number Base for Conversions
DPL 56h Decimal Point Location

FLD 52h Field Width (unused)

CSP 54h Stack Pointer for error checking
R# 56h Editing Cursor location

HLD 58h Holds address during numeric conversion
USE 5Ah Next Block Buffer to Use

PREV 5Ch Most recently accessed disk buffer
[unavailable] 5Eh —Do Not Use—

[unavailable] 606h —Do Not Use—

FORTH_LINK 62h Forth Vocabulary base

ECOUNT 64h Error control

VOC-LINK 66h Vocabulary linkage

VDPMDE 68h VDP Mode (defined in TI Forth Screen #3)
[user to define] 6Ah —available to user—

[user to define] 6Ch —available to user—

[user to define] 6Eh
[user to define] 70h
[user to define] 72h
[user to define] 74h
[user to define] 76h
[user to define] 78h
[user to define] 7Ah
[user to define] 7Ch
[user to define] TEh

—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—

158 E.2 TI Forth User Variables (Variable Name Order)

E.2 TI Forth User Variables (Variable Name Order)

Name Offset Initial Value Description

ALTIN 38h 0 Alternate Input Pointer

ALTOUT 3Ah 0 Alternate Output Pointer

B/BUF$ 22h 1024 Bytes per Buffer

B/SCR$ 24h 1 Blocks per Forth Screen

BASE 4Eh Number Base for Conversions

BLK 3Eh Block being interpreted

C/L$ 1Ch 64 Characters per Line

CONTEXT 48h Pointer to Context Vocabulary

CSsP 54h Stack Pointer for error checking
CURPOS 16h Cursor location in VDP RAM
CURRENT 4Ah Pointer to Current Vocabulary
DISK_BUF 2Ch 1000h VDP location of 1K Buffer
DISK_HI 28h 90 High end Disk Fence

DISK_LO 26h 1 Low end Disk Fence

DISK_SIZE 2Ah 90 Logical Disk Size in Forth Screens
DP 12h Dictionary Pointer

DPL 56h Decimal Point Location

ECOUNT 64h Error control

FENCE 3Ch Dictionary Fence

FIRSTS 1Eh Beginning of Disk Buffers

FLD 52h Field Width (unused)
FORTH_LINK 62h Forth Vocabulary base

HLD 58h Holds address during numeric conversion
IN 46h Byte offset in text buffer

INTLNK 18h Pointer to Interrupt Service Linkage
ISR 36h Interrupt Service Pointer

LIMITS 20h End of Disk Buffers

OFFSET 46h Block offset to disks

ouT 42h Incremented by EMIT

PABS 2Eh 466h VDP location for PABs

PREV 5Ch Most recently accessed disk buffer
R# 56h Editing Cursor location

RO Ah Base of Return Stack

So 8h Base of Stack

SCR 44h Last Forth Screen referenced
SCRN_END 34h 960 Display Screen Image End in VDP
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_WIDTH 36h 40 Display Screen Width in Characters
STATE 4Ch Compilation State

SYS$ 14h Address of System Support

TIB Eh Terminal Input Buffer address

uo Ch Base of User Variables

UCONS$ 6h Base of User Var initial value table

USE 5Ah Next Block Buffer to Use

Appendix E User Variables in TI Forth 159

Name Offset Initial Value Description

VDPMDE 68h VDP Mode (defined in TI Forth Screen #3)
VOC-LINK 66h Vocabulary linkage

WARNING 1Ah 1 Message Control

WIDTH 10h 31 Name length in dictionary

[unavailable] 5Eh
[unavailable] 60h
[user to define] 6Ah
[user to define] 6Ch
[user to define] 6Eh
[user to define] 70h
[user to define] 72h
[user to define] 74h
[user to define] 76h
[user to define] 78h
[user to define] TAh
[user to define] 7Ch
[user to define] TEh

—Do Not Use—

—Do Not Use—

—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—
—available to user—

160 Appendix F TI Forth Load Option Directory

Appendix F Tl Forth Load Option Direct-
ory

The load options are displayed on the TI Forth welcome screen and may subsequently be
displayed by typing MENU . The load options allow you to load only the Forth extensions you
wish to use.

You will notice, for example, that the -EDITOR option also loads the Forth screens that
-SYNONYMS loads. The words loaded by -SYNONYMS are prerequisites for the words loaded by
-EDITOR . If, by chance, the ~-SYNONYMS words were already in the dictionary at the time you
type ~-EDITOR , they would not be loaded again. This is called a conditional load.

F.1 Option: -SYNONYMS

Starting screen: 33

Words loaded:
VSBW VMBW VSBR
VMBR VWTR GPLLNK
XMLLNK DSRLNK CLS
FORMAT-DISK VFILL VAND
VOR VXOR MON
RNDW RND SEED
RANDOMIZE

F.2 Option: -EDITOR (40-Column Editor)

Starting screen: 34
Prerequisite options loaded:
-SYNONYMS
Words loaded:
EDIT ED@ WHERE

F.3 Option: -COPY

Starting screen: 39
Words loaded:

e DTEST SCOPY
SMOVE FORTH-COPY DISK-HEAD

Appendix F TI Forth Load Option Directory

161

F.4 Option: -DUMP

Starting screen: 42

Words loaded:
DUMP .S VLIST

F.5 Option: -TRACE

Starting screen: 44

Prerequisite options loaded:

-DUMP

Words loaded:
TRACE UNTRACE TRON
TROFF ! (alternate)

F.6 Option: -FLOAT

Starting screen: 45

Prerequisite options loaded:

-SYNONYMS

Words loaded:
FDUP FDROP FOVER
FSWAP F! F@
>FAC SETFL FADD
FMUL F+ F-
F* F/ S->FAC
FAC->S FAC>ARG F->S
S->F FRND STR
STR. VAL F$
>F F.R F.
FF.R. FF. FO<
FO= F> F=
F< FLERR ?FLERR
INT ~ SQR
EXP LOG cos
SIN TAN ATN

PI

162

F.7 Option: -TEXT

F.7 Option: -TEXT

Starting screen: 51
Prerequisite options loaded:
-SYNONYMS
Words loaded:

TEXT

F.8 Option: -GRAPH1

Starting screen: 52
Prerequisite options loaded:
-SYNONYMS

Words loaded:
GRAPHICS

F.9 Option: -MULTI

Starting screen: 53
Prerequisite options loaded:
-SYNONYMS
Words loaded:

MULTI

F.10 Option: -GRAPH2

Starting screen: 54
Prerequisite options loaded:
-SYNONYMS

Words loaded:
GRAPHICS2

Appendix F TI Forth Load Option Directory

163

F.11 Option: -SPLIT

Starting screen: 55

Prerequisite options loaded:

-SYNONYMS -GRAPH2
Words loaded:
SPLIT SPLIT2

F.12 Option: -VDPMODES

Starting screen: 51

Prerequisite options loaded:

-SYNONYMS -TEXT -GRAPH1
-MULTI -GRAPH2 -SPLIT

F.13 Option: -GRAPH

Starting screen: 57

Prerequisite options loaded:

-SYNONYMS -CODE

Words loaded:
CHAR CHARPAT VCHAR
HCHAR COLOR SCREEN
GCHAR SSDT SPCHAR
SPRCOL SPRPAT SPRPUT
SPRITE MOTION #MOTION
SPRGET DXY SPRDIST
SPRDISTXY MAGNIFY JOYST
COINC COINCXY COINCALL
DELSPR DELALL MINIT
MCHAR DRAW UNDRAW

DTOG DOT LINE

164

F.14 Option: -FILE

F.14 Option: -FILE

Starting screen: 68

Prerequisite options loaded:

-SYNONYMS

Words loaded:

FILE
SET-PAB
FXD
INTRNL
OUTPT
SQNTL
CHAR-CNT!
N-LEN!
OPN

WRT

SV

STAT

GET-FLAG
CLR-STAT
VRBL
I/0MD
UPDT
RLTV
CHAR-CNT@
F-D"
CLSE
RSTR

DLT

F.15 Option: -PRINT

Starting screen: 72

Prerequisite options loaded:

-SYNONYMS

Words loaded:

SWCH
TRIAD

-FILE

UNSWCH
TRIADS

F.16 Option: -CODE

Starting screen: 74
Words loaded:
CODE

18 See footnote 12, page 52.

; CODE

PUT-FLAG
CHK-STAT
DSPLY
INPT
APPND
REC-LEN
REC-NO
DOI/O0

RD

LD
SCRTCH*®

?ASCII
INDEX

Appendix F TI Forth Load Option Directory

165

F.17 Option: -ASSEMBLER

Starting screen: 75

Prerequisite options loaded:
-CODE

Words loaded:

Entire Assembler vocabulary. See Chapter 9.

F.18 Option: -64SUPPORT (64-Column Editor)

Starting screen: 22

Prerequisite options loaded:

-SYNONYMS -GRAPH -TEXT
-GRAPH2 -SPLIT

Words loaded:
EDIT ED@ WHERE
CLIST CLINE

F.19 Option: -BSAVE

Starting screen: 83

Words loaded:
BSAVE

F.20 Option: -CRU

Starting screen: 88

Prerequisite options loaded:
-CODE

Words loaded:

SBO SBZ B
LDCR STCR

166

Appendix G Assembly Source for CODEd Words

Appendix G Assembly Source for CODEd
Words

Several words on the Forth System Disk have been written in TMS9900 code to increase their
execution speeds and/or decrease their size. They include the words:

SBO — a CRU instruction

SBZ — a CRU instruction

B — a CRU instruction

LDCR — a CRU instruction

STCR — a CRU instruction

DDOT — used by the dot plotting routine
SMASH — used by CLINE and CLIST
TCHAR — definitions for the tiny characters
MON — returns to 99/4A color bar screen

These words have been coded in hexadecimal on your System disk, thus they do not require that
the TI Forth Assembler be in memory before they can be loaded. Their Assembly source code
(written in Forth Assembler) is listed on the following pages.

Editor’s Notes: 1 detected a few errors and items in need of clarification in the TI Forth Assem-
bler source code listed in this section. The errors are corrected in red text on the TI Forth screens
in this section. The corrected lines are also highlighted in gray. The errors are as follows:

Screen 40, line 5: In the code for SBZ , the first *SP should be *SP+ . The TMS9900-
coded word on screen 88 of the TI Forth system diskette is correct.

Screen 43: There are several errors on this screen:

1.

2.

a.

DTAB is supposed to be an initialized table of 12 cells (24 bytes), not just the one cell
defined on this screen in the original (see screen 62 of the TI Forth system diskette to
verify).

DDOT is missing 1 *SP MOV, and NEXT, from the end of the definition of DDOT
which can be verified by examining the code compiled into the dictionary from the
source code here with screen 63 of the TI Forth system diskette.

Screen 44: This screen is missing the definitions of two variables (tables), viz., TCHAR
and LB .
Screen 45 clarifications:

a.

It should be noted that the definition of TCHAR in screen 45 is not actually Assembly
source code. It is high-level Forth source code. It is also larger by two cells than the
actual table stored on screen 67 of the TI Forth system disk. This was undoubtedly
done on purpose to show the reader a neatly formatted table of the characters
encoded. If you actually wanted to copy the table, resulting from loading screen 45,
to screen 67 of the system disk, you would need to start the 384-byte transfer from an
offset two cells beyond the beginning of TCHAR .

b. The comment, (~0) (Shift+0), on line 5 is a substitute for ()) , a syntax error.

Appendix G Assembly Source for CODEd Words

167

SCR

LCoNOUA~A,WNREO

#40

(SOURCE FOR CRU WORDS) BASE->R HEX

CODE SBO
*SP+ 0C MOV, 0OC OC A,
0 SBO, NEXT,
CODE SBZ
*SP+ 0C MOV, 0OC OC A,
0 SBZ, NEXT,

CODE TB
*SP 0C MOV, 0OC OC A,
*SP CLR, 0 TB,
EQ IF,
*SP INC,
ENDIF,
NEXT,
R->BASE -->
#41

(SOURCE FOR CRU WORDS) BASE->R HEX

0C CONSTANT CRU
CODE LDCR

*SP+ CRU MOV, CRU CRU A, *SP+ 1 MOV,
*SP+ 0 MOV, 01 OF ANDI,

NE IF,
01 08 (I,
LTE IF,
0 SWPB,
ENDIF,
ENDIF,

01 06 SLA, 01 3000 ORI,

NEXT,

R->BASE -->

#42

(SOURCE FOR CRU WORDS) BASE->R HEX

CODE STCR

*SP+ CRU MOV, CRU CRU A,

0 CLR, 01 000F ANDI,

02 02 MoOv,

NE IF,
02 08 (I,
LTE IF,

0 SWPB,
ENDIF,
ENDIF,
0 *SP MOv,
NEXT,

R->BASE

*SP 01 Mov,
01 02 MoV,
01 06 SLA, 01 3400 ORI,

168 Appendix G Assembly Source for CODEd Words
SCR #43

® (SOURCE FOR DDOT)

1 BASE->R HEX 8040 VARIABLE DTAB 2010 , 8064 , 201 , 7FBF , DFEF ,

2 F7FB , FDFE , 8040 , 2010 , 8064 , 201 ,

3 CODE DDOT

4 *SP+ 1 MOV, *SP 3 MOV, 12 MOV,

5 3 4 MOV, 1 7 ANDI, 3 7 ANDI,

6 2 F8 ANDI, 4 F8 ANDI, 2 5 SLA,

7 2 1A, 4 1A, 1 2000 AI,

8 4 CLR, DTAB 3 @(?) 4 MOVB,

9 4 SWPB, 4 *SP MoV, SP DECT,

10 1 *SP MOV,

11 NEXT,

12

13

14

15 R->BASE
SCR #44

O (SOURCE FOR SMASH) BASE->R HEX

1 0 VARIABLE TCHAR 17E ALLOT 43 BLOCK TCHAR 180 CMOVE

2 TCHAR 7C - CONSTANT TC 0 VARIABLE LB FE ALLOT

3 CODE SMASH (ADDR #CHAR LINE# --- LB VADDR CNT)

4 *SP+ 1 MOV, *SP+ 2 MOV, *SP 3 MOV, 4 LB LI,

5 4 *SP MOV, SP DECT, 1 SWPB, 1 2000 AI,

6 1 *Sp MOV, 21 MOV, 1 INC, 1 FFFE ANDI, SP DECT,

7 12 SLA, 1 *SP Mov,

8 32 A, BEGIN, 2 3 C, GT WHILE, 5 CLR, 6 CLR,

9 3 *?+ 5 MOVB, 3 *?+ 6 MOVB, 56 SRL, 6 6 SRL,
10 BEGIN, TC 5 @(?) 6 MOV, TC 6 @(?) 1 MOV, 1 4 SRC,

11 C 4 LI, BEGIN, 0 B MOV, B FOO0 ANDI, 1 7 MOV, 7 FOO ANDI,
12 B 7 S0C, 7 4 *?+ MOVB, 0 C SRC, 1 C SRC, C DEC, EQ UNTIL,
13 5 INCT, 6 INCT, 5 C MOV, C 2 ANDI, EQ UNTIL, REPEAT,
14 NEXT,

R->BASE

Appendix G Assembly Source for CODEd Words

169

SCR

CoNOUAWNREO

FOR TINY CHARACTERS) BASE->R HEX
TCHAR EEEE

e e e R R e e R R R e T R

)
#)
&)
v)
/)
2)
5)
8)
i)
>)
A)
D)

0444
04EC
0480
04EE
0000
04AA
0C22
0688
04AA
0024
04A2
O0CAA
OE88

’

" " WM N N N W W N e 0w

4404
46E4
0000
0400
E000
AAA4
Cc22C
CAA4
622C
8420
4404
CAAC
C88E

CHARACTERS CONTINUED)

P e e R e e e e R R e e e e

G)
J)
M)
P)
S)
V)
Y)
\)
)
b)
e)
h)
k)
n)

OAAA
0AAC
OAAE
OEAA
0E44
OAAA
0E24
0C44
0420
0006
000E
000E
0008
000E

" WM M N M WM M N N W W W ow o=

EAAA
CAAA
EEAA
AAEC
4444
AEEA
488E
444C
0000
8886
8C88
444E
888E
AAAE

CHARACTERS CONCLUDED)

#45

(DEFINITIONS
OEEE VARIABLE
0000 , 0000 ,
08AE , AEA2 ,
06AC , 4A86 ,
0842 , 2248 ,
0000 , 0048 ,
0224 , 4488 ,
04A2 , 488E ,
0E8C , 222C ,
04AA , 4AA4 ,
0004 , 0048 ,
0084 , 2480 ,
04AA , EAAA ,
OCAA , AAAC ,
-

#46

(TINY

04A8 , 8AA6 ,
0222 , 22A4 ,
OAEE , AAAA ,
OCAA , (888 ,
0688 , 422C ,
OAAA , AA44 ,
OAAA , E444 ,
0884 , 4422 ,
0000 , OO0OF ,
000C , ACAC ,
000E , 8CS8E ,
000A , AEAA ,
000A , CCAA ,
000A , EEEA ,
-—>

#47

(TINY

000E , AAEC ,
000E , 4444 ,
000A , AEEA ,
000E , 248E ,
0C44 , 244C ,
R->BASE

P~~~ o~~~

q)
t)
w)
z)

b

000C
000A
000A
0644
02E8

’
’
’
’

ACAA
AAAE
A4AA
8446
0000

N M WM N M N W W W W w o w 0w

N M N N N W N N N W W w ow oW

(
(
(
(
(
(
(
(
(
(
(
(
(

P e e R e e e e e e e e e e

o~~~ o~~~

1)
$)
")
*)
-)
0)
3)
6)
9)
<)
?)
B)
E)

H)
K)
N)
Q)
T)
W)
Z)
1)
")
c)
)

1)
o)

r)
u)
X)

{)

0AAO
0A24
0248
0044
0000
04C4
02AA
0E22
0004
000E
04AE
0688
OE88

OE44
0888
OEAA
0CAA
O0AAA
0AA4
0644
044A
0004
000C
0004
0002
000A
000C

0006
000A
000A
0444
OEEE

" M W WM M WM W W W w e 0w

I T .

- e e e o=

0000
448A
8842
E440
0004
4444
AE22
4488
0040
OE00
AEA4
8886
Cc888

444E
888E
AAAE
CAAA
AAAE
44AA
4446
A000
AEAA
AAAC
A8AG
22A4
EEAA
AC88

842C
AA44
AE44
0444
EEEE

N M M N N N W W W N N owo0w

L L T I

-~ v v e o=

e e e R R e e e R R e T)

P e e R R e e e R e e e e R

P~~~ o~~~

")

()

+)

1)
4)
7)

@)
)
F)

I)
E)
0)
R)
U)
X)
[)
$)
a)
d)
g)

m)
p)

s)
V)
y)

DEL)

170 Appendix G Assembly Source for CODEd Words

SCR #48
0 (SOURCE FOR MON) BASE->R HEX
1
2 CODE MON
3 0 4E4F LI, 1 2000 LI,
4 BEGIN,
5 0 1 *?+ MOV,
6 1 4000 CI,
7 EQ UNTIL,
8 0 @() BLWP,
9
10
11
12
13
14

15 R->BASE

Appendix H Error Messages 171

Appendix H Error Messages

Error# Message Probable Causes

1 empty stack Procedure being executed attempts to pop a number off the
parameter stack when there is no number on the parameter
stack. The error may have occurred long before it is
detected as Forth checks for this condition only when
control returns to the outer interpreter.

2 dictionary full The user dictionary space is full. Too many definitions have
been compiled.
3 has incorrect address Not used by TI Forth. Some fig-Forth assemblers use this
mode message.
4 isn’t unique This message is more a warning than an error. It informs the

user that a word with the same name as the one just
compiled is already in the CURRENT or CONTEXT
vocabulary.

6 disk error This has several possible causes: No disk in disk drive, disk
not initialized, disk drive or controller not connected
properly, disk drive or controller not plugged in. The
diskette may be damaged with some sector having a hard

error.

7 full stack The procedure being executed is leaving extra unwanted
numbers on the parameter stack resulting in a stack
overflow.

9 file I/O error Any file I/O operation which results in an error will return

this message. The GET-FLAG instruction will fetch the
status byte. An error code of 0 indicates no error only if the
COND bit (bit 2) of the STATUS byte located at 837Ch is
not set.

code meaning

00 Bad device name

01 Device is write protected

02 Bad open attribute

03 Illegal operation

04 Out of table or buffer space on the device
05 Attempt to read past EOF

06 Device error

07 File error. Attempt to open nonexistent file, efc.

172

Appendix H Error Messages

Error# Message

Probable Causes

10

floating point error

This error message will be issued only when ?FLERR is
executed and a true flag is returned. FLERR may be
executed to fetch the floating point status byte.

code meaning

01 Overflow

02 Syntax

03 Integer overflow on conversion

04 Square root of negative

05 Negative number to non-integer power
06 Logarithm of a non-positive number

07 Invalid argument in a trigonometric function

11

disk fence violation

An attempt has been made to write to a screen outside the
disk fence area. The values of DISK_LO and DISK_HI must
be changed to include this screen before it may be written to.

12

can’t load from screen 0

Self explanatory. Loading from screen 0 is Forth’s
indication for loading from the keyboard.

17

compilation only, use in
definition

Occurs when conditional constructs such as DO .. LOOP or
IF .. THEN are executed outside a colon definition.

18

execution only

Occurs when you attempt to compile a compiling word into
a colon definition.

19

conditionals not paired

A DO has been left with a LOOP , an IF has no corresponding
THEN , etc.

20

definition not finished

A ; was encountered and the parameter stack was not at the
same height as when the preceding : was encountered. For
example, - ->

23

off current editing screen Not used in TI Forth.

24

declare vocabulary

Not used in TI Forth due to the way TI Forth’s FORGET is
configured.

25

bad jump token

Improper use of jump tokens or conditionals in the TI Forth
Assembler.

Appendix | Contents of the TI Forth Diskette 173

Appendix | Contents of the Tl Forth
Diskette

The Forth screens that follow have been modified from the original to fix known bugs as
documented in Appendix J. The changed lines are highlighted in gray and the actual changes are
marked by red text.

SCR #2
0 TI FORTH
1
2 THIS VERSION OF THE FORTH LANGUAGE
3 IS BASED ON THE fig-FORTH MODEL
4
5 THE ADDRESS OF THE FORTH INTEREST GROUP 1IS:
6
7 FORTH INTEREST GROUP
8 P.0. BOX 1105
9 SAN CARLOS, CA 94070
10
11 TEXAS INSTRUMENTS PERSONNEL WITH SIGNIFICANT
12 INPUT TO THIS VERSION INCLUDE:
13 LEON TIETZ
14 LESLIE O'HAGAN

15 EDWARD E. FERGUSON

174 Appendix I Contents of the TI Forth Diskette

SCR #3
0 (WELCOME SCREEN) © 0 GOTOXY ." BOOTING..." CR
1 BASE->R HEX 10 83C2 C! (QUIT OFF!)
2 DECIMAL (84 LOAD) 20 LOAD 16 SYSTEM MENU
3 HEX 68 USER VDPMDE 1 VDPMDE ! DECIMAL
4 : -SYNONYMS 33 LOAD ; -EDITOR 34 LOAD ; -COPY 39 LOAD ;
5 : -DUMP 42 LOAD ; -TRACE 44 LOAD ; -FLOAT 45 LOAD ;
6 : -TEXT 51 LOAD ; : -GRAPH1 52 LOAD ; -MULTI 53 LOAD ;
7 : -GRAPH2 54 LOAD ; -SPLIT 55 LOAD ; -GRAPH 57 LOAD ;
8 : -FILE 68 LOAD ; -PRINT 72 LOAD ; : -CODE 74 LOAD ;
9 : -ASSEMBLER 75 LOAD ; : -64SUPPORT 22 LOAD ;
10 : -VDPMODES -TEXT -GRAPH1 -MULTI -GRAPH2 -SPLIT ;
11 : -BSAVE 83 LOAD ; : -CRU 88 LOAD ;
12
13
14
15 R->BASE

SCR #4

0 (ERROR MESSAGES)

1 empty stack

2 dictionary full

3 has incorrect address mode
4 isn't unique.
5
6
7
8
9

disk error
full stack

file i/o error
10 floating point error
11 disk fence violation
12 can't load from screen zero

15 TI FORTH --- a fig-FORTH extension

SCR #5
0 (ERROR MESSAGES)
1 compilation only, use in definition
2 execution only
3 conditionals not paired
4 definition not finished
5 in protected dictionary
6 use only when loading
7 off current editing screen
8 declare vocabulary
9 bad jump token

Appendix | Contents of the TI Forth Diskette 175

SCR #20
O (CONDITIONAL LOAD)
1 : MENU CR 272 265 DO I MESSAGE CR LOOP CR CR CR ;
2 : SLIT (--- ADDR OF STRING LITERAL)
3 R> DUP C@ 1+ =CELLS OVER + >R ;
4
5 : WLITERAL (WLITERAL word)
6 BL STATE @
7 IF COMPILE SLIT WORD HERE C@ 1+ =CELLS ALLOT
8 ELSE WORD HERE ENDIF ; IMMEDIATE -->
9 -SYNONYMS -EDITOR -COPY
10 -DUMP -TRACE -FLOAT
11 -TEXT -GRAPH1 -MULTI
12 -GRAPH2 -SPLIT -VDPMODES
13 -GRAPH -FILE -PRINT
14 -CODE -ASSEMBLER -64SUPPORT

15 -BSAVE -CRU

176 Appendix I Contents of the TI Forth Diskette

SCR #21
(CONDITIONAL LOAD)
: <CLOAD> (SCREEN STRING_ADDR ---)
CONTEXT @ @ (FIND)
IF DROP DROP 0=
IF BLK @
IF R> DROP R> DROP
ENDIF
ENDIF
ELSE -DUP
IF LOAD
10 ENDIF
11 ENDIF ;
12 : CLOAD (scr_no CLOAD name)
13 [COMPILE] WLITERAL STATE @
14 IF COMPILE <CLOAD> ELSE <CLOAD> ENDIF
15 ; IMMEDIATE

CoNOUAWNREO

SCR #22
(64 COLUMN EDITOR) 0 CLOAD ED@
BASE->R DECIMAL 57 R->BASE CLOAD LINE BASE->R DECIMAL 51 R->BASE
CLOAD TEXT BASE->R DECIMAL 54 R->BASE CLOAD GRAPHICS2 BASE->R
DECIMAL 55 R->BASE CLOAD SPLIT
BASE->R DECIMAL 65 R->BASE CLOAD CLIST
BASE->R HEX (3800 ‘' SATR !)
VOCABULARY EDITOR2 IMMEDIATE EDITOR2 DEFINITIONS
0 VARIABLE CUR
: 'CUR 0 MAX B/SCR B/BUF * 1- MIN CUR ! ;
: +CUR CUR @ + !CUR ;
10 : +LIN CUR @ C/L / + C/L * !CUR ; DECIMAL
11 : LINE. DO I SCR @ (LINE) I CLINE LOOP ;
12 : BCK 0 0 GOTOXY QUIT ;
13 : PTR SCR @ B/SCR * CUR @ B/BUF /MOD ROT + BLOCK + ;

OCoNOUA~,WNEREO

14 : R/C CUR @ C/L /MOD ; (--- COL ROW) R->BASE -->
15
SCR #23
0 (64 COLUMN EDITOR) BASE->R HEX
1
2 : CINIT 3800 DUP ‘' SPDTAB ! 860 / 6 VWTR 3800 ‘ SATR !
3 SATR 2 0 DO DUP >R DOOO SP@ R> 2 VMBW DROP 4 + LOOP DROP
4 0000 0000 0000 0000 5 SPCHAR 0 CUR '!
5 FO090 9090 9090 90F0 6 SPCHAR 0 1 F 5 0 SPRITE ; DECIMAL
6
7 : PLACE CUR @ 64 /MOD 8 * 1+ SWAP 4 * 1- DUP 0< IF DROP 0 ENDIF
8 SWAP 0 SPRPUT ;
9 : UP -64 +CUR PLACE ;

10 : DOWN 64 +CUR PLACE ;

11 : LEFT -1 +CUR PLACE ;

12 : RIGHT 1 +CUR PLACE ;

13 : CGOTOXY (COL ROW ---) 64 * + !CUR PLACE ;

15 R->BASE -->

Appendix | Contents of the TI Forth Diskette 177

SCR #24
0 (64 COLUMN EDITOR) BASE->R
1
2 DECIMAL
3
4 .CUR CUR @ C/L /MOD CGOTOXY ;
5 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;
6
7 : DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
8 DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
9 0 +LIN PTR C/L 32 FILL C/L * !CUR ;
10 : INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
11 DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
12 PAD PTR C/L CMOVE C/L * !CUR ;
13 : RELINE R/C SWAP DROP DUP LINE. UPDATE .CUR ;
14 +.CUR +CUR .CUR ;
15 R- >BASE -->
SCR #25
0 (64 COLUMN EDITOR) BASE->R DECIMAL
1 : -TAB PTR DUP C@ BL >
2 IF BEGIN 1- DUP -1 +CUR C@ BL =
3 UNTIL
4 ENDIF
5 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL > ELSE .CUR 1 ENDIF UNTIL
6 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL = DUP IF 1 +.CUR ENDIF
7 ELSE .CUR 1 ENDIF
8 UNTIL DROP ;
9 : TAB PTR DUP C@ BL = 0=
10 IF BEGIN 1+ DUP 1 +CUR C@ BL =
11 UNTIL
12 ENDIF
13 CUR @ 1023 = IF .CUR 1
14 ELSE BEGIN 1+ DUP 1 +CUR C@ BL > UNTIL .CUR
15 ENDIF DROP ; R->BASE -->
SCR #26
0 (64 COLUMN EDITOR) BASE->R
1 DECIMAL
2 : !BLK PTR C! UPDATE ;
3 : BLNKS PTR R/C DROP C/L SWAP - 32 FILL ;
4 : HOME 0 0 CGOTOXY ;
5 : REDRAW SCR @ CLIST UPDATE .CUR ;
6 : SCRNO CLS 0 0 GOTOXY ." SCR #" SCR @ BASE->R DECIMAL U.
7 R->BASE CR ;
8 : +SCR SCR @ 1+ DUP SCR ! SCRNO CLIST ;
9 : -SCR SCR @ 1- 0 MAX DUP SCR ! SCRNO CLIST ;
10 : DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32
11 PTR R/C DROP - C/L + 1- C! ;
12 : INS 32 PTR DUP R/C DROP C/L SWAP - + SWAP DO
13 I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
14 DO I C! -1 +LOOP ; R->BASE -->

178 Appendix I Contents of the TI Forth Diskette

SCR #27
0 (64 COLUMN EDITOR 153JUL82 LAO) BASE->R DECIMAL
1 0 VARIABLE BLINK 0 VARIABLE OKEY
2 10 CONSTANT RL 150 CONSTANT RH 0 VARIABLE KC RH VARIABLE RLOG
3 : RKEY BEGIN ?KEY -DUP 1 BLINK +! BLINK @ DUP 60 < IF 6 0 SPRPAT
4 ELSE 5 0 SPRPAT ENDIF 120 = IF 0 BLINK ! ENDIF
5 IF (SOME KEY IS PRESSED) KC@ 1KC+! 0 BLINK !
6 IF (WAITING TO REPEAT) RLOG @ KC @ <
7 IF (LONG ENOUGH) RL RLOG ! 1 KC ! 1 (FORCE EXT)
8 ELSE OKEY @ OVER =
9 IF DROP 0 (NEED TO WAIT MORE)
10 ELSE 1 (FORCE EXIT) DUP KC ! ENDIF
11 ENDIF
12 ELSE (NEW KEY) 1 (FORCE LOOP EXIT) ENDIF
13 ELSE (NO KEY PRESSED) RH RLOG ! 0 KC ! 0
14 ENDIF
15 UNTIL DUP OKEY ! ; R->BASE -->

SCR #28
0 (64 COLUMN EDITOR) BASE->R HEX
1 : EDT VDPMDE @ 5 = 0= IF SPLIT ENDIF CINIT !CUR R/C CGOTOXY
2 DUP DUP SCR ! SCRNO CLIST BEGIN RKEY
3 CASE 08 OF LEFT ENDOF 0C OF -SCR ENDOF
4 OA OF DOWN ENDOF 03 OF DEL RELINE ENDOF
5 0B OF UP ENDOF 04 OF INS RELINE ENDOF
6 09 OF RIGHT ENDOF 07 OF DELLIN REDRAW ENDOF
7 OE OF HOME ENDOF 06 OF INSLIN REDRAW ENDOF
8 02 OF +SCR ENDOF 16 OF TAB ENDOF
9 oD OF 1 +LIN .CUR PLACE ENDOF 7F OF -TAB ENDOF
10 01 OF DELHALF BLNKS RELINE ENDOF
11 OF OF 5 0 SPRPAT CLS SCRNO DROP 300 ‘ SATR ! QUIT ENDOF
12 1E OF INSLIN BLNKS REDRAW ENDOF

13 DUP 1F > OVER 7F < AND IF DUP !BLK R/C SWAP DROP DUP SCR @
14 (LINE) ROT CLINE 1 +.CUR ELSE 7 EMIT ENDIF ENDCASE AGAIN ;
15 R->BASE -->

SCR #29
0 (64 COLUMN EDITOR) BASE->R HEX
1 FORTH DEFINITIONS
2 : EDIT EDITOR2 0 EDT ;
3 : WHERE EDITOR2 B/SCR /MOD SWAP B/BUF * ROT + 2- EDT ;
4
5 : ED@ EDITOR2 SCR @ SCRNO EDIT ;
6
7
8
9
10
11
12
13
14

15 R->BASE

Appendix | Contents of the TI Forth Diskette 179

SCR #33
O (SYSTEM CALLS 09JUL82 LCT) © CLOAD RANDOMIZE
1 BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
2 BASE->R DECIMAL
3 : VSBW O SYSTEM ; : VMBW 2 SYSTEM ;
4 : VSBR 4 SYSTEM ; : VMBR 6 SYSTEM ;
5 : VWTR 8 SYSTEM ; : GPLLNK 0 33660 C! 10 SYSTEM ;
6 : XMLLNK 12 SYSTEM ; : DSRLNK 8 14 SYSTEM ;
7 : CLS 16 SYSTEM ; : FORMAT-DISK 1+ 18 SYSTEM ;
8 : VFILL 20 SYSTEM ; : VAND 22 SYSTEM ; : VOR 24 SYSTEM ;
9 : VXOR 26 SYSTEM ; HEX

10 CODE MON 0200 , 4E4F , 0201 , 2000 , CC40 , 0281 , 4000 , 16FC ,
11 0420 , 0000 ,

12 : RNDW 83C0O0 DUP @ 6FE5 * 7AB9 + 5 SRC DUP ROT ! ;

13 : RND RNDW ABS SWAP MOD ; : SEED 83CO0 ! ;

14 : RANDOMIZE 8802 C@ DROP 0 BEGIN 1+ 8802 C@ 80 AND UNTIL SEED ;
15 R->BASE

SCR #34
0 (SCREEN EDITOR 09JUL82 LCT) 0 CLOAD ED@
1 BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
2 BASE->R HEX VOCABULARY EDITOR1 IMMEDIATE EDITOR1 DEFINITIONS
3 : BOX 8F7 8F1 DO 84 I VSBW LOOP ;
4 : CUR R# ;
5 : ICUR 0 MAX B/SCR B/BUF * 1- MIN CUR ! ;
6 : +CUR CUR @ + !CUR ;
7 : +LIN CUR @ C/L / + C/L * ICUR ;
8
9

0 VARIABLE S_H DECIMAL
: FTYPE 40 * 124 + SWAP VMBW ;
10 : LISTA DECIMAL 0 0 GOTOXY DUP SCR !
11 ." SCR#" . CRCRCR16 0 DO I 3 .RCR LOOP ;
12 : ROWCAL S_H @ IF 29 + ENDIF ;
13 : LINE. DO I SCR @ (LINE) DROP ROWCAL 35 I FTYPE LOOP ;
14 LISTB L/SCR 0 LINE. ;
15 R- >BASE -->
SCR #35
0 (SCREEN EDITOR 09JUL82 LCT)
1
2 : LISTL BASE->R LISTA 4 1 GOTOXY
3." 1 2 3 " 4 2 GOTOXY
4 " ..+ 00 L 0L L 0L
50 S H ! LISTB R->BASE ;
6 : LISTR BASE->R DROP 4 1 GOTOXY
7 ." 3 4 5 6 " 4 2 GOTOXY
8 ." 0. R PR I U R ¢ DR
9 1 S_ H ' LISTB R- >BASE ;

10 : BCK © L/SCR 2+ GOTOXY QUIT ;

11 : PTR SCR @ B/SCR * CUR @ B/BUF /MOD ROT + BLOCK + ;
12 : R/C CUR @ C/L /MOD ; (--- COL ROW)

13 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;

15 -->

180 Appendix I Contents of the TI Forth Diskette

SCR #36
0 (SCREEN EDITOR 12JUL82 LCT) BASE->R DECIMAL
1 .CUR CUR @ C/L /MOD 3 + SWAP 4 + DUP S H @
2 IF 32 > IF 29 - ELSE SCR @ LISTL ENDIF
3 ELSE 39 < 0= IF SCR @ LISTR 29 - ENDIF
4 ENDIF SWAP GOTOXY ;
5 : DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
6 DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
7 0 +LIN PTR C/L 32 FILL C/L * !CUR ;
8 : INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
9 DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
10 PAD PTR C/L CMOVE C/L * !CUR ;
11 RELINE R/C SWAP DROP DUP 13 EMIT LINE. UPDATE .CUR ;

12 : +.CUR +CUR .CUR ;

13 : TAB PTR DUP @ 32 = 0= IF BEGIN 1+ DUP 1 +CUR C@ 32 = UNTIL

14 ENDIF CUR @ 1023 = IF .CUR 1 ELSE BEGIN 1+ DUP 1 +CUR C@ 32 >
15 UNTIL .CUR ENDIF ; R->BASE -->

SCR #37
0 (SCREEN EDITOR 12JUL82 LCT) BASE->R DECIMAL
1 -TAB PTR DUP C@ 32 > IF BEGIN 1- DUP -1 +CUR C@ 32 = UNTIL
2 ENDIF BEGIN CUR @ IF 1- DUP -1 +CUR C@ 32 > ELSE .CUR 1 ENDIF
3 UNTIL BEGIN CUR @ IF 1- DUP -1 +CUR C@ 32 = DUP IF 1 +.CUR
4 ENDIF ELSE .CUR 1 ENDIF UNTIL ; : 'BLK PTR C! UPDATE 1 +.CUR ;
5 : BLNKS PTR R/C DROP C/L SWAP - 32 FILL ;
6 : FLIP S_H @ IF -29 ELSE 29 ENDIF +.CUR ;
7 : REDRAW SCR @ S_H @ IF LISTR ELSE LISTL ENDIF UPDATE .CUR ;
8 : NEWSCR O SWAP LISTL !CUR .CUR ;
9 : +SCR SCR @ 1+ NEWSCR ;

10 : -SCR SCR @ 1- 0 MAX NEWSCR ;

11 : DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32

12 PTR R/C DROP - C/L + 1- C! ;

13 : INS 32 PTR DUP R/C DROP C/L SWAP - + SWAP DO

14 I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
15 DO I C! -1 +LOOP ; R->BASE -->

SCR #38
0 (SCREEN EDITOR 12JUL82 LCT) BASE->R HEX
1 : VED BOX SWAP CLS LISTL !CUR .CUR BEGIN KEY CASE
2 OF OF BCK ENDOF 01 OF DELHALF BLNKS RELINE ENDOF
3 08 OF -1 +.CUR ENDOF 02 OF +SCR ENDOF
4 OA OF C/L +.CUR ENDOF 0C OF -SCR ENDOF
5 0B OF C/L MINUS +.CUR ENDOF 03 OF DEL RELINE ENDOF
6 09 OF 1 +.CUR ENDOF 04 OF INS RELINE ENDOF
7 0D OF 1 +LIN .CUR ENDOF 07 OF DELLIN REDRAW ENDOF
8 OE OF FLIP ENDOF 06 OF INSLIN REDRAW ENDOF
9 1E OF INSLIN BLNKS REDRAW ENDOF 16 OF TAB ENDOF

10 7F OF -TAB ENDOF

11 DUP 1F > OVER 7F < AND IF DUP EMIT DUP !BLK ELSE 7 EMIT ENDIF
12 ENDCASE AGAIN ; FORTH DEFINITIONS

13 : WHERE EDITOR1 B/SCR /MOD SWAP B/BUF * ROT + 2- VED ;

14 : EDIT EDITOR1 0 VED ; : ED@ EDITOR1 SCR @ EDIT ;

15 R >BASE

Appendix | Contents of the TI Forth Diskette 181

SCR #39
0 (STRING STORE AND SCREEN COPY WORDS 123JUL82 LCT) 0O CONSTANT AD
1 0 CLOAD DISK-HEAD (ADDR ---) BASE->R HEX
2 : (!") R COUNT DUP 1+ =CELLS R> + >R >R SWAP R> CMOVE ;
3 : !" 22 STATE @ (STORE STRING AT ADDR)
4 IF COMPILE (!"™) WORD HERE C@
5 1+ =CELLS ALLOT
6 ELSE WORD HERE COUNT >R SWAP R> CMOVE
7 ENDIF ; IMMEDIATE DECIMAL (SCREEN COPYING WORDS)
8 : DTEST 90 0 DO I DUP . BLOCK DROP LOOP ;
9 : SCOPY OFFSET @ + SWAP BLOCK 2- ! UPDATE FLUSH ; (1K BLOCKS)

10 : SMOVE >R OVER OVER - DUP O< SWAP R MINUS > + 2 = IF

11 OVER OVER SWAP R + 1- SWAP R + 1- -1 ' AD ! ELSE 1 ' AD !
12 ENDIF R> 0 DO OVER OVER SCOPY AD + SWAP AD + SWAP LOOP DROP
13 DROP ;

14 : FORTH-COPY 90 0 DO I DUP . 90 + I SCOPY LOOP ;
15 R->BASE -->
SCR #40
(WRITE A HEAD COMPATABLE WITH THE DISK MANAGER 12JUL82 LCT)

0
1 BASE->R HEX

2 : DISK-HEAD 0 CLEAR 0 BLOCK (START SECTOR 0)

3 DUP !" FORTH " DUP A + 168 SWAP !

4 DUP C + 944 SWAP ! DUP E + 534B SWAP !

5 DUP 10 + 2000 SWAP ! DUP 12 + 26 0 FILL

6 DUP 38 + C8 FF FILL 100 + (START SECTOR 1)

7 DUP 2 SWAP ! DUP 2+ FE 00 FILL

8 100 + (START SECTOR 2)

9 DUP !" SCREENS " DUP A + O SWAP !

10 DUP C + 2 SWAP ! DUP E + 165 SWAP !

11 DUP 10 + 80 SWAP ! DUP 12 + CA02 SWAP !

12 DUP 14 + 8 0 FILL DUP 1C + 2250 SWAP !

13 DUP 1E + 1403 SWAP ! DUP 20 + 4016 SWAP ! 22 + ODE 0 FILL
14 FLUSH

15 ; R->BASE

182 Appendix I Contents of the TI Forth Diskette

SCR #42

0 (DUMP ROUTINES 12JUL82 LCT)

1 0 CLOAD VLIST BASE->R HEX

2 : DUMP8 -DUP

3 IF

4 BASE->R HEX 0 OUT ! SPACE OVER 4 U.R

5 OVER OVER 0 DO

6 DUP @ 0 <# # # # # BL HOLD BL HOLD #> TYPE 2+ 2

7 +LOOP DROP 1F OUT @ - SPACES

8 0 Do

9 DUP C@ DUP 20 < OVER 7E > OR

10 IF DROP 2E ENDIF

11 EMIT 1+

12 LOOP

13 CR R->BASE

14 ENDIF ;

15 -->
SCR #43

0 (DUMP ROUTINES 12JUL82 LCT)

1 : DUMP CR 00 8 U/ >R SWAP R> -DUP

2 IF 0

3 DO 8 DUMP8 PAUSE IF SWAP DROP 0 SWAP LEAVE ENDIF LOOP

4 ENDIF SWAP DUMP8 DROP ;

5: .S CRSP@ 2- S0 @2- ."] " OVER OVER = 0= IF

6 DO I @ U. -2 +LOOP ELSE DROP DROP ENDIF ;

7 : VLIST 80 OUT ! CONTEXT @ @

8 BEGIN DUP C@ 3F AND OUT @ + 25 >

9 IF CR 0 OUT ! ENDIF

10 DUP ID. PFA LFA @ SPACE DUP 0= PAUSE OR

11 UNTIL DROP ; R->BASE

12

13

14

15
SCR #44

0 (TRACE COLON WORDS-FORTH DIMENSIONS III/2 P.58 260CT82 LCT)

1 0 CLOAD (TRACE) BASE->R DECIMAL 42 R->BASE CLOAD VLIST

2 FORTH DEFINITIONS

3 0 VARIABLE TRACF (CONTROLS INSERTION OF TRACE ROUTINE)

4 0 VARIABLE TFLAG (CONTROLS TRACE OUTPUT)

5 : TRACE 1 TRACF ! ;

6 : UNTRACE 0 TRACF ! ;

7 : TRON 1 TFLAG ! ;

8 : TROFF 0 TFLAG ! ;

9 : (TRACE) TFLAG @ (GIVE TRACE OUTPUT?)

10 IF CR R 2- NFA ID. (BACK TO PFA NFA FOR NAME)

11 .S ENDIF ; (PRINT STACK CONTENTS)

12 : : (REDEFINED TO INSERT TRACE WORD AFTER COLON)

13 ?EXEC !'CSP CURRENT @ CONTEXT ! CREATE [' : CFA @] LITERAL
14 HERE 2- ! TRACF @ IF ' (TRACE) CFA DUP @ HERE 2- ! , ENDIF]

15 ; IMMEDIATE

Appendix | Contents of the TI Forth Diskette

183

SCR

CoNOUAWNREO

#45
(FLOATING POINT <4 WORD> STACK ROUTINES 12JUL82 LCT)
0 CLOAD PI BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
BASE->R HEX
: FDUP SP@ DUP 2- SWAP 6 + DO I @ -2 +LOOP ;
: FDROP DROP DROP DROP DROP ;
: FOVER SP@ DUP 6 + SWAP E + DO I @ -2 +LOOP ;
: FSWAP FOVER >R >R >R >R >R >R >R >R
FDROP R> R> R> R> R> R> R> R> ;
: F! 4 0 DO DUP >R ! R> 2+ LOOP DROP ;
F@ 6 + 4 0 DO DUP >R @ R> 2- LOOP DROP ;
834A CONSTANT FAC 835C CONSTANT ARG

: >FAC FAC F! ; : >ARG ARG F! ; : FAC> FAC F@ ;
: SETFL >FAC >ARG ;

: FADD 0600 C SYSTEM ; : FSUB 0700 C SYSTEM ;

: FMUL 0800 C SYSTEM ; : FDIV 0900 C SYSTEM ;
R->BASE -->

#46

(FLOATING POINT ARITHMETIC ROUTINES 12JUL82 LCT)
BASE->R HEX
: F+ SETFL FADD FAC>
: F- SETFL FSUB FAC>
: F* SETFL FMUL FAC>
: F/ SETFL FDIV FAC>
: S->FAC FAC ! 2300 C SYSTEM ;
: FAC->S 1200 C SYSTEM FAC @ ;
: FAC>ARG FAC ARG 8 CMOVE ;
: F->S >FAC FAC->S ;
S->F S->FAC FAC> ;
DECIMAL
: FRND 3 0 DO 100 RND 100 RND 256 * + LOOP
100 RND 16128 + ;

R->BASE -->

#47
(FLOATING POINT CONVERSION ROUTINES CONTINUED 12JUL82 LCT)
BASE->R HEX
: DOSTR FAC B + C! 14 GPLLNK
FAC B + C@ 8300 + FAC C + C@ DUP PAD C!
PAD 1+ SWAP CMOVE ;

(NUMBER IN FAC CONVERTED TO BASIC STRING AND PLACED AT PAD)
: STR 0 DOSTR ;

(NUMBER IN FAC CONVERTED TO FIXED STRING AND PLACED AT PAD)
: STR. FACD + C! FAC C + C! DOSTR ;

(STRING AT PAD CONVERTED TO NUMBER IN FAC)

: VAL PAD 1+ 1000 DUP FAC C + ! PAD C@ OVER OVER + 20 SWAP VSBW
VMBW 1000 XMLLNK ;

R->BASE -->

184 Appendix I Contents of the TI Forth Diskette

SCR #48
0 (FLOATING POINT - COMPILE NO TO STACK 12JUL82 LCT) BASE->R HEX
1 : F$ PAD 1+ SWAP >R R CMOVE R> PAD C! VAL FAC> ;
2 : (>F) R COUNT DUP 1+ =CELLS R> + >R F$;
3 : >F 20 STATE @
4 IF COMPILE (>F) WORD HERE C@
5 1+ =CELLS ALLOT
6 ELSE WORD HERE COUNT F$
7 ENDIF ; IMMEDIATE
8
9 (FLOATING POINT OUTPUT ROUTINES)

10 : JST PAD C@ - SPACES PAD COUNT TYPE ;

11 : F.R >R >FAC STR R> JST ;

12 : F. 0 F.R ;

13 : FF.R >R >R >R >FAC R> 0 R> STR. R> JST ;
14 FF. 0 FF.R ;

15 R >BASE -->

SCR #49
(FLOATING POINT COMPARE ROUTINES 12JUL82 LCT)
BASE->R HEX
: FCLEAN >R DROP DROP DROP R> ;

: FO= 0= FCLEAN ;

: FCOM SETFL 0AG0 C SYSTEM 837C C@ ;
: F> FCOM 40 AND MINUS O< ;

10 : F= FCOM 20 AND MINUS 0O< ;

11 : F< FCOM 60 AND 0= ;

12 : FLERR 8354 C@ ;

13 : ?FLERR FLERR A ?ERROR ;

0
1
2
3
4 : FO< O0< FCLEAN ;
5
6
7
8
9

15 R->BASE -->

SCR #50
0 (FLOATING POINT TRANSCENDENTAL FUNCTIONS 12JUL82 LCT)
1 BASE->R HEX
2 0 VARIABLE LNKSAV
3 : GLNK 83C4 @ LNKSAV ! GPLLNK LNKSAV @ 83C4 ! ;
4 : INT >FAC 22 GLNK FAC> ;
5 : ~ SETFL ARG 836E @ 8 VMBW 24 GLNK FAC> 8 836E +! ;
6 : SQR >FAC 26 GLNK FAC>
7 : EXP >FAC 28 GLNK FAC>
8 : LOG >FAC 2A GLNK FAC>
9 : COS >FAC 2C GLNK FAC>
10 : SIN >FAC 2E GLNK FAC>
11 : TAN >FAC 30 GLNK FAC>
12 : ATN >FAC 32 GLNK FAC>
13 : PI >F 3.141592653590

15 R->BASE

Appendix | Contents of the TI Forth Diskette

185

SCR

CoNOUAWNREO

#51

(CONVERT TO TEXT MODE CONFIGURATION 14SEP82 LAO)

0 CLOAD TEXT BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
BASE->R HEX

: TEXT
0 3CO0 20 VFILL (BLANKS TO SCREEN IMAGE AREA)
28 SCRN_WIDTH ! O SCRN_START ! 3C0 SCRN_END ! 460 PABS !
SETVDP1 1 VDPMDE '!
(NOW SET VDP REGISTERS)
16 VWWTR OF4 7 VWTR
OFO0 SETVDP2 ;

R->BASE

#52

(CONVERT TO GRAPHICS MODE CONFIG 14SEP82 LAO)

0 CLOAD GRAPHICS BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
BASE->R HEX

: GRAPHICS
0 300 20 VFILL (BLANKS TO SCREEN IMAGE AREA) 300 80 0 VFILL
380 20 F4 VFILL
20 SCRN_WIDTH ! 0 SCRN_START ! 300 SCRN_END '!
SETVDP1 2 VDPMDE !
(NOW SET VDP REGISTERS)
16 VWTR OF4 7 VWTR
EO SETVDPZ2 ;

R->BASE

#53

(CONVERT TO MULTI-COLOR MODE CONFIG 14SEP82 LAO)

0 CLOAD MULTI BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
BASE->R HEX

: MULTI 0BO 1 VWTR (BLANK THE SCREEN)
-1 18 0 DO I 4 / OFF SWAP DO 1+ I OVER VSBW 8 +LOOP LOOP DROP
800 800 0 VFILL (INIT 256 CHAR PATTERNS TO 0)
300 80 0 VFILL 380 20 OF4 VFILL
20 SCRN_WIDTH ! 0 SCRN_START ! 300 SCRN_END ! 460 PABS !
1000 DISK_BUF ! (RESTORE USER VARIABLES)
3 VDPMDE !
(NOW SET VDP REGISTERS)
4 6 VWWTR 11 7 VWTR
OEB SETVDP2 ;

R->BASE

186

Appendix I Contents of the TI Forth Diskette

SCR

CoNOUA,WNREO

OCoNOUMAWNREO

=
o

11
12
13
14
15

#54
(CONVERT TO GRAPHICS2 MODE CONFIG 14SEP82 LAO)
0 CLOAD GRAPHICS2 BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
BASE->R HEX : GRAPHICS2 0AO0 1 VWTR
-1 1B0O 1800 DO 1+ DUP OFF AND I VSBW LOOP DROP
1 PABS @ VSBW 16 PABS @ 1+ VSBW 1 (#FILE) 834C C! PABS @ 8356 !
OA OE SYSTEM (SUBROUTINE TYPE DSRLNK TO SET 2 DISK BUFFERS)
0 1800 OFO VFILL (INIT COLOR TABLE)
2000 1800 0 VFILL (INIT BIT MAP)
20 SCRN_WIDTH ! 1800 SCRN_START ! 1B00 SCRN_END ! 1B00 PABS !
1C00 DISK_BUF ! (USER VARIABLES NOW SET UP)
2 0 VWTR 6 2 VWTR (SET VDP REGISTERS)
07F 3 VWTR OFF 4 VWTR
70 5 VWTR 7 6 VWTR
OF1 7 VWTR OEO DUP 83D4 C! 1 VWTR 1BCO 836E ! (VSPTR)
0 0 GOTOXY 4 VDPMDE ! 0 837A C! ;
R->BASE

#55

(CONVERT TO SPLIT MODE CONFIG 14SEP82 LAO)

0 CLOAD SPLIT BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2

BASE->R DECIMAL 54 R->BASE CLOAD GRAPHICS2

BASE->R HEX

: SPLIT GRAPHICS2 1A00 SCRN_START ! 0AO0 1 VWTR 3000 800 OFF
VFILL 3100 834A ! 18 GPLLNK 3300 834A ! 4A GPLLNK
1A00 100 20 VFILL 1000 800 OF4 VFILL 0 0 GOTOXY OEO 1 VWTR
5 VDPMDE '! 0 837A C!

: SPLIT2 GRAPHICS2 1880 SCRN_END ! 2000 400 OFF VFILL
2100 834A ! 18 GPLLNK 2300 834A ! 4A GPLLNK
1800 80 20 VFILL 0 400 OF4 VFILL 0 0 GOTOXY 6 VDPMDE '!
0 837A C! ;

R->BASE

#56
(VDPMODES 14SEP82 LAO) 0 CLOAD SETVDP2 BASE->R DECIMAL 33
R->BASE CLOAD RANDOMIZE BASE->R HEX
: SETVDP1 0BO 1 VWTR (BLANK THE SCREEN)
800 800 OFF VFILL (INIT 256 CHAR PATTERNS TO FF)
900 834A ! 18 GPLLNK (LOAD CAPITAL LETTERS)
B0O 834A ! 4A GPLLNK (LOAD LOWER CASE -ON 99/4A ONLY) ;
: SETVDP2 (n ---) 460 PABS !
1000 DISK_BUF '! (RESTORE USER VARIABLES)
(SET VDP REGISTERS)
0 0 VWIR 0 2 VWTR OE 3 VWTR
1 4 VWTR 6 5 VWTR
3E0 836E ! (VSPTR)
1 PABS @ VSBW 16 PABS @ 1+ VSBW 3 (#FILE) 834C C! PABS @ 8356 !
OA OE SYSTEM (SUB TYPE DSRLNK TO SET 3 DISK BUF)
0 0 GOTOXY 0 837A C!
DUP 83D4 C! 1 VWTR ; R->BASE

Appendix | Contents of the TI Forth Diskette

187

SCR #57
0 (GRAPHICS PRIMITIVES 12JUL82 LCT) © CLOAD CHAR BASE->R DECIMAL
33 R->BASE CLOAD RANDOMIZE BASE->R DECIMAL 74 R->BASE CLOAD
;CODE BASE->R HEX
380 CONSTANT COLTAB 300 CONSTANT SATR 780 CONSTANT SMTN
800 CONSTANT PDT 800 CONSTANT SPDTAB
: CHAR (W1 W2 W3 W4 CH ---)
8 *PDT + >R -2 6 DO PAD I + ! -2 +LOOP PAD R> 8 VMBW ;
: CHARPAT (CH --- W1 W2 W3 W4)
8 * PDT + PAD 8 VMBR 8 0 DO PAD I + @ 2 +LOOP ;
: VCHAR (X Y CNT CH ---)
10 >R >R SCRN_WIDTH @ * + SCRN_END @ SCRN_START @ - SWAP
11 R> R> SWAP 0 DO SWAP OVER OVER SCRN_START @ + VSBW SCRN_WIDTH
12 @ + ROT OVER OVER /MOD IF 1+ SCRN_WIDTH @ OVER OVER = IF -
13 ELSE DROP ENDIF ENDIF ROT DROP ROT LOOP DROP DROP DROP ;
14 R->BASE -->

CoNOUTA, WNR

15
SCR #58
0 (GRAPHICS PRIMITIVES 200CT83 LAO) BASE->R HEX
1 : HCHAR (X Y CNT CH ---)
2 >R >R SCRN_WIDTH @ * + SCRN_START @ + R> R> VFILL ;
3 : COLOR (FG BG CHSET ---) >R SWAP 10 * + R> COLTAB + VSBW ;
4 : SCREEN (COLOR =---) 7 VWIR ;
5 : GCHAR (X Y =--- ASCII) (COLUMNS AND ROWS NUMBERED FROM 0)
6 SCRN_WIDTH @ * + SCRN_START @ + VSBR ;
7 : SSDT (ADDR ---) (SET SPRITE DESCRIPTOR TABLE ADDRESS)
8 DUP ' SPDTAB ! 800 / 6 VWTR (RESET VDP REG 6)
9 VDPMDE @ 4 < IF SMTN 80 0 VFILL 300 ' SATR ! ENDIF

16 SATR 20 0 DO DUP >R DOOO SP@ R> 2 VMBW DROP 4 + LOOP DROP
11 (INIT ALL SPRITES) ;

12 : SPCHAR (W1 W2 W3 W4 CH# ---)
13 8 * SPDTAB + >R -2 6 DO PAD I + ! -2 +LOOP PAD R> 8 VMBW ;
14 : SPRCOL (COL # =---) 4 * SATR 3 + + DUP >R VSBR OF0 AND OR
15 R> VSBW ; R->BASE -->
SCR #59
0 (GRAPHICS PRIMITIVES 200CT83 LCT)
1 BASE->R HEX
2 : SPRPAT (CH # ---) 4 * SATR 2+ + VSBW ;
3 : SPRPUT (DX DY # ---)
4 4 * SATR + >R 1- 100 U* DROP + SP@ R> 2 VMBW DROP ;
5 : SPRITE (DX DY COL CH # ---) (SPRITES NUMBERED 0 - 31)
6 DUP 4 * SATR + >R DUP >R SPRPAT R SPRCOL R> SPRPUT R> 4 +
7 SATR DO I VSBR DO = IF C001 SP@ I 2 VMBW DROP ENDIF 4 +LOOP ;
8 : MOTION (SPX SPY # ---)
9 4 * SMIN + >R 8 SLA SWAP OOFE AND OR SP@ R> 2 VMBW DROP ;
10 : #MOTION (NO ---) 837A C! ;
11 : SPRGET (# --- DX DY)

12 4 * SATR + DUP VSBR 1+ OFF AND SWAP 1+ VSBR SWAP ;
13 : DXY (X2 Y2 X1 Y1 --- X"2 Y*2)

14 ROT - ABS ROT ROT - ABS DUP * SWAP DUP * ;

15 R->BASE -->

188 Appendix I Contents of the TI Forth Diskette

SCR #60
0 (GRAPHICS PRIMITIVES 12JUL82 LCT)
1 BASE->R HEX : BEEP 34 GPLLNK ; : HONK 36 GPLLNK ;
2 : SPRDIST (#1 #2 --- DIST"2) (DISTANCE BETWEEN 2 SPRITES)
3 SPRGET ROT SPRGET DXY OVER OVER
4 + DUP >R OR OR 8000 AND IF R> DROP 7FFF ELSE R> ENDIF ;
5 : SPRDISTXY (X Y # --- DIST"2) SPRGET DXY OVER OVER
6 + DUP >R OR OR 8000 AND IF R> DROP 7FFF ELSE R> ENDIF ;
7 : MAGNIFY (MAG-FACTOR ---)
8 83D4 C@ OFC AND + DUP 83D4 C! 1 VWTR ;
9 : JOYST (KEYBDNO --- ASCII XSTAT YSTAT) 8374 C!
10 ?KEY DROP 8375 C@ DUP DUP 12 = IF DROP 0 0 ELSE OFF =
11 IF 8377 C@ 8376 C@ ELSE 8375 C@
12 CASE 4 OF OFC 4 ENDOF 5 OF 0 4 ENDOF 6 OF 4 4 ENDOF

13 2 OF OFC © ENDOF 3 OF 4 0 ENDOF 0 OF 0 OFC ENDOF
14 OF OF OFC OFC ENDOF OE OF 4 OFC ENDOF DROP DROP 0 0 0 0
15 ENDCASE ENDIF ENDIF 4 8374 C! ; R->BASE -->
SCR #61
0 (GRAPHICS PRIMITIVES 12JUL82 LCT) BASE->R HEX
1 COINC (#1 #2 TOL --- F) (0= NO COINC 1= COINC)
2 DUP * DUP + >R SPRDIST R> > 0= ;
3 : COINCXY (DX DY # TOL --- F)
4 DUP * DUP + >R SPRDISTXY R> > 0= ;
5 : COINCALL (--- F) (BIT SET IF ANY TWO SPRITES OVERLAP)
6 8802 C@ 20 AND 20 = ;
7 : DELSPR (# ---)
8 4 * DUP SATR + >R 0 C001 SP@ R> 4 VMBW DROP DROP
9 SMTN + >R 0 0 SP@ R> 4 VMBW DROP DROP ;

10 : DELALL (---)
11 0 #MOTION SATR 20 0 DO DUP DO SWAP VSBW 4 + LOOP DROP
12 SMTN 80 0 VFILL ;

13
14
15 R->BASE -->

SCR #62
0 (GRAPHICS PRIMITIVES 24N0OV82 LAO) BASE->R HEX 0 VARIABLE ADR
1 : MINIT 18 0 DO 0 I 4 / 20 * DUP 20 + SWAP
2 DO DUP J 1 I HCHAR 1+ LOOP DROP LOOP ;
3 : MCHAR (COLOR C R ---) DUP >R 2 / SWAP DUP >R 2 / SWAP
4 DUP >R GCHAR DUP 20 / 100 U* DROP 800 + >R 20 MOD
5 8 *R>+R> 4 MOD 2 * + ADR ! R> 2 MOD R> 2 MOD SWAP
6 IF IF 3 ELSE 1 ENDIF ELSE 1IF 2 ELSE 0 ENDIF ENDIF
7 DUP 2 MOD 0= IF SWAP 10 * SWAP ENDIF
8 CASE O OF ADR @ VSBR OF ENDOF 1 OF ADR @ VSBR FO ENDOF
9 2 OF 1 ADR +! ADR @ VSBR OF ENDOF

10 3 OF 1 ADR +! ADR @ VSBR FO ENDOF

11 ENDCASE AND + ADR @ VSBW ;

12 0 VARIABLE DMODE -1 VARIABLE DCOLOR

13 : DRAW 0 DMODE ! ; : UNDRAW 1 DMODE ! ; : DTOG 2 DMODE ! ;
14 8040 VARIABLE DTAB 2010 , 804 , 201 , 7FBF , DFEF , F7FB ,

15 FDFE , 8040 , 2010 , 804 , 201 , R->BASE -->

Appendix | Contents of the TI Forth Diskette

189

SCR #63
0 (GRAPHICS PRIMITIVES) BASE->R HEX
1 CODE DDOT C079 ,
2 cop9 , Co81 , C103 , 0241 ,
3 0007 , 0243 , 0007 , 0242 ,
4 00F8 , 0244 , 00F8 , OA52 ,
5 A042 , AO044 , 0221 , 2000 ,
6 04C4 , D123 , DTAB , 06C4 ,
7 C644 , 0649 , C641 , 045F ,
8 : DOT (XY ---)
9 DDOT DUP 2000 - >R DMODE @
10 CASE 0 OF VOR ENDOF (DRAW)
11 1 OF SWAP FF XOR SWAP VAND ENDOF
12 2 OF VXOR ENDOF (TOGGLE)

13 DROP DROP ENDCASE R>
14 DCOLOR @ 0 < IF DROP ELSE DCOLOR @ SWAP VSBW ENDIF ;

15 R->BASE -->

SCR #64
0 (GRAPHICS PRIMITIVES 12JUL82 LCT) BASE->R HEX
1 : SGN DUP IF DUP 0< IF -1 ELSE 1 ENDIF ELSE O ENDIF + ;
2 : LINE >R R ROT >R R - SGN SWAP >R R ROT >R R - SGN OVER ABS
3 OVER ABS < >R R 0= IF SWAP ENDIF 100 ROT ROT */ R>
4 IF (X AXIS) R> R> OVER OVER >
5 IF (MAKE L TO R) SWAP R> DROP R>
6 ELSE R> R> DROP
7 ENDIF 100 * ROT ROT 1+ SWAP
8 DO I OVER 0 100 M/ SWAP DROP DOT OVER + LOOP
9 ELSE (Y AXIS) R> R> R> R> ROT >R ROT >R OVER OVER >
10 IF (MAKE T TO B) SWAP R> DROP R>
11 ELSE R> R> DROP
12 ENDIF 100 * ROT ROT 1+ SWAP
13 DO DUP 0 100 M/ SWAP DROP I DOT OVER + LOOP
14 ENDIF DROP DROP ;
15 R->BASE

SCR #65
0 (COMPACT LIST)
1 0 CLOAD SMASH BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
2 BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE BASE->R DECIMAL
3 0 VARIABLE TCHAR 382 ALLOT 67 BLOCK TCHAR 384 CMOVE HEX
4 TCHAR 7C - CONSTANT TC 0 VARIABLE BADDR 0 VARIABLE INDX
5 (SMASH EXPECTS ADDR #CHAR LINE# --- LB VADDR CNT)
6 0 VARIABLE LB FE ALLOT
7 CODE SMASH
8 Co79 , CoB9 , CoD9 , 0204 , LB , C644 , 0649 , 06C1
9 0221 , 2000 , C641 , CO42 , 0581 , 0241 , FFFE , 0649
10 0A21 , C641 , A083 , 80C2 , 1501 , 1020 , 04C5 , 04C6
11 D173 , D1B3 , 0965 , 0966 , C025 , TC , Co66 , TC
12 oB41 , 020C , 0004 , C2C0 , 024B , F000 , CiC1 , 0247
13 oFoo0 , E1CB , DDO7 , 0BCO , OBCl1l , 060C , 16F4 , 05C5
14 05C6 , C305 , 024C , 0002 , 16E7 , 10DD , 045F ,

15 R->BASE -

->

(UNDRAW)

190 Appendix I Contents of the TI Forth Diskette

SCR #66
0 (COMPACT LIST) BASE->R DECIMAL
1 : CLINE LB 100 ERASE SMASH VMBW ;
2 : CLOOP DO I 64 * OVER + 64 I CLINE LOOP DROP ;
3
4 : CLIST BLOCK 16 0 CLOOP ;
5
6
7
8
9
10
11
12
13
14 R->BASE
15
SCR #68
0 (FILE I/O ROUTINES 12JUL82 LCT)
1 0 CLOAD STAT BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
2 BASE->R HEX
3 0 VARIABLE PAB-ADDR
4 0 VARIABLE PAB-BUF
5 0 VARIABLE PAB-VBUF
6 : FILE <BUILDS , , , DOES> DUP @ PAB-VBUF ! 2+ DUP @ PAB-BUF !
7 2+ @ PAB-ADDR ! ;
8 : GET-FLAG PAB-ADDR @ 1+ VSBR ;
9 : PUT-FLAG PAB-ADDR @ 1+ VSBW ;

10 : SET-PAB PAB-ADDR @ DUP OA O VFILL 2+ PAB-VBUF SWAP 2 VMBW ;
11 : CLR-STAT GET-FLAG 1F AND PUT-FLAG ;

12 : CHK-STAT GET-FLAG OEO AND

13 837C C@ 20 AND OR 9 ?ERROR ;

14 : FXD GET-FLAG OEF AND PUT-FLAG ;

15 : VRBL GET-FLAG 10 OR PUT-FLAG ; R->BASE -->

Appendix | Contents of the TI Forth Diskette 191

SCR #69
0 (FILE I/0 ROUTINES 12JUL82 LCT) BASE->R HEX

1 : DSPLY GET-FLAG OF7 AND PUT-FLAG ;

2 : INTRNL GET-FLAG 8 OR PUT-FLAG ;

3 : I/OMD GET-FLAG OF9 AND ;

4 : INPT I/OMD 4 OR PUT-FLAG ;

5 : OUTPT I/OMD 2 OR PUT-FLAG ;

6 : UPDT I/OMD PUT-FLAG ;

7 : APPND I/OMD 6 OR PUT-FLAG ;

8 : SQNTL GET-FLAG OFE AND PUT-FLAG ;

9 : RLTV GET-FLAG 1 OR PUT-FLAG ;
10 : REC-LEN PAB-ADDR @ 4 + VSBW ;
11 : CHAR-CNT! PAB-ADDR @ 5 + VSBW ;
12 : CHAR-CNT@ PAB-ADDR @ 5 + VSBR ;
13 : REC-NO DUP SWPB PAB-ADDR @ 6 + VSBW PAB-ADDR @ 7 + VSBW ;
14 : N-LEN! PAB-ADDR @ 9 + VSBW ;
15 R >BASE -->

SCR #70

0 (FILE I/O0 ROUTINES 12JUL82 LCT) BASE->R HEX

1 (COMPILE A STRING WHICH IS MOVED TO VDP-ADDR AT EXECUTION)
2

3 (F-D")

4 PAB-ADDR @ OA + R COUNT DUP 1+ =CELLS R> +

5 >R >R SWAP R VMBW R> N-LEN! ;

6 : F-D" 22 STATE @

7 IF

8 COMPILE (F-D") WORD HERE C@

9 1+ =CELLS ALLOT

10 ELSE

11 PAB-ADDR @ OA + SWAP WORD HERE COUNT >R SWAP R
12 VMBW R> N-LEN!

13 ENDIF ; IMMEDIATE

14

15 R->BASE -->

SCR #71

0 (FILE I/O ROUTINES 12JUL82 LCT)

1 BASE->R HEX

2 : DOI/O CLR-STAT PAB-ADDR @ VSBW PAB-ADDR @ 9 + 8356 !
3 0 837C C! DSRLNK CHK-STAT ;

4 : OPN 0 DOI/O ;

5 : CLSE 1 DOI/0 ;

6 : RD 2 DOI/O PAB-VBUF @ PAB-BUF @ CHAR-CNT@ VMBR CHAR-CNT@ ;
7 : WRT >R PAB-BUF @ PAB-VBUF @ R VMBW R> CHAR-CNT! 3 DOI/O ;
8 : RSTR REC-NO 4 DOI/O ;

9 : LD REC-NO 5 DOI/O ;

10 : SV REC-NO 6 DOI/O ;

11 : DLT 7 DOI/O ;

12 : SCRTCH REC-NO 8 DOI/O ;

13 : STAT 9 DOI/O PAB-ADDR @ 8 + VSBR ;

14

15 R->BASE

192 Appendix I Contents of the TI Forth Diskette

SCR #72
0 (ALTERNATE I/0 SUPPORT FOR RS232 PNTR 12JUL82 LCT)
1 0 CLOAD INDEX BASE->R DECIMAL 68 R->BASE CLOAD STAT
2 0 0 0 FILE >RS232 BASE->R HEX
3 : SWCH >RS232 PABS @ 10 + DUP PAB-ADDR ! 1- PAB-VBUF '!
4 SET-PAB OUTPT F-D" RS232.BA=9600" OPN 3
5 PAB-ADDR @ VSBW 1 PAB-ADDR @ 5 + VSBW PAB-ADDR @ ALTOUT ! ;
6 : UNSWCH 0 ALTOUT ! CLSE ;
7 : ?ASCII (BLOCK# --- FLAG)
8 BLOCK 0 SWAP DUP 400 + SWAP
9 DO I C@ 20 > + I C@ DUP 20 < SWAP 7F > OR
10 IF DROP 0 LEAVE ENDIF LOOP ;
11 : TRIAD O SWAP SWCH 3 / 3 * DUP 3 + SWAP
12 DO I ?ASCII IF 1+ I LIST CR ENDIF LOOP
13 -DUP IF 3 SWAP - 14 * 0 DO CR LOOP
14 OF MESSAGE OC EMIT ENDIF UNSWCH ;

15 R->BASE -->
SCR #73
0 (SMART TRIADS AND INDEX 15SEP82 LAO) BASE->R DECIMAL
1 : TRIADS (FROM TO ---)
2 3 /3*1+ SWAP 3/ 3 * DO I TRIAD 3 +LOOP ;
3 : INDEX (FROM TO ---) 1+ SWAP
4 DO I DUP ?ASCII IF CR 4 .R 2 SPACES I BLOCK 64 TYPE ELSE DROP
5 ENDIF PAUSE IF LEAVE ENDIF LOOP ;
6
7
8
9
10
11
12
13
14
15 R->BASE
SCR #74

0 (ASSEMBLER 123UL82 LCT)
1 FORTH DEFINITIONS

2 0 CLOAD CODE

3

4 VOCABULARY ASSEMBLER IMMEDIATE

5

6 : CODE

7 ?EXEC CREATE SMUDGE LATEST PFA DUP CFA !
8 [COMPILE] ASSEMBLER H

9

10 : ;CODE

11 ?CSP COMPILE (;CODE) SMUDGE

12 [COMPILE] [[COMPILE] ASSEMBLER ;
13

14

15

Appendix | Contents of the TI Forth Diskette

193

SCR

CoNOUAWNREO

#75

(ASSEMBLER 12JUL82 LCT) 0 CLOAD A$$M
BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
BASE->R HEX

ASSEMBLER DEFINITIONS

: GOP' OVER DUP 1F > SWAP 30 < AND

IF + , , ELSE + , ENDIF ;
: GOP <BUILDS , DOES> @ GOP' ;
0440 GOP B, 0680 GOP BL, 0400 GOP BLWP,
04C0 GOP CLR, 0700 GOP SETO, 0540 GOP INV,
0500 GOP NEG, 0740 GOP ABS, 06CO GOP SWPB,

0580 GOP INC, 05C0 GOP INCT, 0600 GOP DEC,
0640 GOP DECT, 0480 GOP X,

: GROP <BUILDS , DOES> @ SWAP 40 * + GOP' ;
2000 GROP COC, 2400 GROP CzZC, 2800 GROP XOR,
3800 GROP MPY, 3C00 GROP DIV, 2C00 GROP XOP,
-->

#76
(ASSEMBLER 12JUL82 LCT)
: GGOP <BUILDS ,
DOES> @ SWAP DUP DUP 1F > SWAP 30 < AND
IF 40 * + SWAP >R GOP' R> ,
ELSE 40 * + GOP' ENDIF ;

AOOO GGOP A, B000 GGOP AB,
8000 GGOP C, 9000 GGOP CB,
6000 GGOP S, 7000 GGOP SB,

E000 GGOP SOC, F000 GGOP SOCB,
4000 GGOP SZC, 5000 GGOP SZCB,
Co000 GGOP MOV, DOOO GGOP MOVB,

: O0P <BUILDS DOES> @ , ;

0340 OOP IDLE, 0360 O0P RSET, 03CO OOP CKOF,
03A0 OOP CKON, O3EO O0P LREX, 0380 OOP RTWP,
-->

#77
(ASSEMBLER 12JUL82 LCT)

: ROP <BUILDS , DOES> @ + , ;

02CO ROP STST, 02A0 ROP STWP,

: IOP <BUILDS , DOES> @ , , ;

02E0 IOP LWPI, 0300 IOP LIMI,

: RIOP <BUILDS , DOES> @ ROT + , , ;
0220 RIOP AI, 0240 RIOP ANDI,

0280 RIOP (I, 0200 RIOP LI,

0260 RIOP ORI,

-->

194 Appendix I Contents of the TI Forth Diskette

SCR #78
0 (ASSEMBLER 12JUL82 LCT)
1 : RCOP <BUILDS , DOES> @ SWAP 10 * + + , ;
2 OAGO RCOP SLA, 0800 RCOP SRA,
3 0BOO RCOP SRC, 0900 RCOP SRL,
4 : DOP <BUILDS , DOES> @ SWAP OOFF AND OR , ;
5 1300 DOP JEQ, 1500 DOP JGT,
6 1B0O DOP JH, 1400 DOP JHE,
7 1A00 DOP JL, 1200 DOP JLE,
8 1100 DOP JLT, 1000 DOP JMP,
9 1700 DOP JNC, 1600 DOP JNE,

10 1900 DOP JNO, 1800 DOP JoOC,

11 1Coo6 DOP JoOP, 1D00 DOP SBO,

12 1E00 DOP SBZ, 1Fo0 DOP TB,

13 : GCOP <BUILDS , DOES> @ SWAP O00F AND 040 * + GOP' ;
14 3000 GCOP LDCR, 3400 GCOP STCR,

12 : *UP UpP *?
13 : NEXT OF

: *UP+ UP *7+
: *NEXT+ NEXT *?+ ;

15 -->
SCR #79
0 (ASSEMBLER 12JUL82 LCT)
1: @() 020 ; 1 X7 010 + ;
2 1 ¥+ 030 + ; : @(?) 020 + ;
3: W 0A ; : @(W) W @(?) ;
4 : W W *x? W+ W *?+ ;
5 : RP OE ; : @Q(RP) RP @(?) ;
6 : *RP RP *? ; ! *RP+ RP *?+ ;
7 : IP oD ; : @Q(IP) IP @(?) ;
8 : *IP IP *? ; 1 XIP+ IP *?+ ;
9 : SP 09 ; : @(SP) SP @(?) ;
10 : *SP SP *? ; : *SP+ SP *?+ ;
11 : UP 08 ; : @(UP) UP @(?) ;
14 : *NEXT NEXT *? ; : @(NEXT) NEXT @(?) ;
15 -->
SCR #80
0 (ASSEMBLER 12JUL82 LCT)
1 (DEFINE JUMP TOKENS)
2 :GTE 1; :H 2; : NE3 ;
3:1L 4 ; :LTE5; : EQ6 ;
4 : 0C 7; :NC 8; :0009 ;
5:HE OA ; : LEOB ; : NP OC ;
6 : LT OD ; : GT OE ; : NO OF ;
7 : OP 10 ;
8 : CIvMP ?EXEC
9 CASE LT OF 1101 , 0 ENDOF
10 GT OF 1501 , 0 ENDOF
11 NO OF 1901 , 0 ENDOF
12 OP OF 1C01 , 0 ENDOF
13 DUP 0< OVER 10 > OR IF 19 ERROR ENDIF DUP
14 ENDCASE 100 * 1000 + , ;

Appendix | Contents of the TI Forth Diskette 195

SCR #81
0 (ASSEMBLER 12JUL82 LCT)
1 : IF, ?EXEC
2 [COMPILE] CJMP HERE 2- 42 ; IMMEDIATE
3 : ENDIF, ?EXEC
4 42 ?PAIRS HERE OVER - 2- 2 / SWAP 1+ C! ; IMMEDIATE
5 : ELSE, ?EXEC
6 42 ?PAIRS 0 [COMPILE] CJMP HERE 2- SWAP 42 [COMPILE]
7 ENDIF, 42 ; IMMEDIATE
8 : BEGIN, ?EXEC
9 HERE 41 ; IMMEDIATE
10 : UNTIL, ?EXEC
11 SWAP 41 ?PAIRS [COMPILE] CJMP HERE - 2 / OOFF AND
12 HERE 1- C! ; IMMEDIATE
13 : AGAIN, ?EXEC
14 0 [COMPILE] UNTIL, ; IMMEDIATE
15 -->
SCR #82
0 (ASSEMBLER 12JUL82 LCT)
1 : REPEAT, ?EXEC
2 >R >R [COMPILE] AGAIN, R> R> 2- [COMPILE] ENDIF,
3 ; IMMEDIATE
4 : WHILE, ?EXEC
5 [COMPILE] IF, 2+ ; IMMEDIATE
6
7
8
9
10 : NEXT, *NEXT B, ;
11
12 FORTH DEFINITIONS
13
14 : ASM ; R->BASE
15
SCR #83
0 (BSAVE -- BINARY SAVER FOR FORTH OVERLAYS LCT 14SEP82)
1 0 CLOAD BSAVE BASE->R DECIMAL
2 : BSAVE (from scrn-no ---) FLUSH
3 BEGIN
4 SWAP >R DUP 1+ SWAP
5 OFFSET @ + BUFFER UPDATE DUP B/BUF ERASE
6 R OVER ! 2+ HERE OVER ! 2+
7 CURRENT @ OVER ! 2+ LATEST OVER ! 2+
8 CONTEXT @ OVER ! 2+ CONTEXT @ @ OVER ! 2+
9 VOC-LINK @ OVER ! 2 + 29801 OVER ! 10 +
10 HERE R -
11 R> DUP 1000 + >R SWAP >R SWAP R>
12 1000 MIN CMOVE
13 R SWAP HERE R> <
14 UNTIL
15 SWAP DROP FLUSH ; R->BASE

196 Appendix I Contents of the TI Forth Diskette

SCR #84
0 (NEW MESSAGE ROUTINE 13SEP82 LCT) BASE->R DECIMAL
1
2 (THIS VERSION OF MESSAGE HAS THE SCREEN 4 AND 5 MESSAGES
3 INCLUDED IN THIS ROUTINE.)
4
5 FLUSH EMPTY-BUFFERS HERE LIMIT$ @ B/BUF 4 + - DUP LIMITS$!
6 DP ! (PLACES message WHERE 5TH DISK BUF IS. NOW HAVE 4 BUFS)
7 : message
8 WARNING @
9 IF
10 -DUP
11 IF (NON-ZERO MESSAGE NUMBER)
12 DUP 26 <
13 IF (MESSAGE NEED NOT BE RETRIEVED FROM DISK)
14 CASE (FOLLOWING CASES FOR MESSAGE NUMBERS)
15 -->
SCR #85
0 (NEW MESSAGE CONTINUED)
1 01 OF ." empty stack"” ENDOF
2 02 OF ." dictionary full" ENDOF
3 03 OF ." has incorrect address mode" ENDOF
4 04 OF ." isn't unique." ENDOF
5
6 06 OF ." disk error" ENDOF
7 07 OF ." full stack" ENDOF
8
9 09 OF ." file i/o error" ENDOF
10 10 OF ." floating point error" ENDOF
11 11 OF ." disk fence violation" ENDOF
12 12 OF ." can't load from screen zero" ENDOF
13
14
15 15 OF ." TI FORTH --- a fig-FORTH extension" ENDOF -->
SCR #86
0 (NEW MESSAGE CONTINUED)
1 17 OF ." compilation only, use in definition" ENDOF
2 18 OF ." execution only" ENDOF
3 19 OF ." conditionals not paired" ENDOF
4 20 OF ." definition not finished" ENDOF
5 21 OF ." in protected dictionary" ENDOF
6 22 OF ." use only when loading" ENDOF
7
8 24 OF ." declare vocabulary" ENDOF
9 25 OF ." bad jump token" ENDOF
10
11 ENDCASE
12
13 -->
14

Appendix | Contents of the TI Forth Diskette

197

SCR

#87

0 (NEW MESSAGE CONTINUED)

CoNOUTA, WNR

ELSE

4 OFFSET @ B/SCR / -

ENDIF
ENDIF
ELSE

MOMSG # M.

ENDIF

DP !

(INSTALL NEW MESSAGE)
' MESSAGE

' BRANCH CFA

' message OVER - 2- OVER 2+ !

R->BASE

#88
(CRU WORDS

BASE->R HEX

CODE SBO (339
CODE SBZ (339
CODE TB C319

CODE LDCR (€339
0281
0481

CODE STCR €339
0A61
0008

R->BASE

A30C
A30C
A30C

A30C
0008
045F

A30C
0261
1501

14

120CT82 LAO)
BASE->R DECIMAL 74 R->BASE CLOAD ;CODE

1D00
1E00
04D9

co79
1501

Co59
3400
06CO

’

’

.LINE

045F
045F
1F00

Cco39
06CO

04Co
0481
€640

0 CLOAD STCR

1601

0241
0A61

0241
Co82
045F

(RESTORE DP TO POSITION PRIOR TO message)

0599
000F
0261

000F
1304

045F
1304
3000

cosl
0282

198 Appendix J TI Forth Bugs

Appendix J Tl Forth Bugs

TI Forth Bugs found as of the May, 1985 issue of HOCUS (Milwaukee TI Users Group):
Jeff Stanford—

Screen 22, Line 5:
BASE->R HEX (3800 ' SATR !)
Screen 23, Line 2:
: CINIT 3800 DUP ' SPDTAB ! 800 / 6 VWTR 3800 ' SATR !
Screen 28, Line 1
: EDT VDPMDE @ 5 = 0= IF SPLIT ENDIF CINIT !CUR R/C CGOTOXY
Screen 28, Line 11:
OF OF 5 0 SPRPAT CLS SCRNO DROP 300 ' SATR ! QUIT ENDOF

Tom Freeman—

Screens 53 — 55, Line 1 on each screen:
Change VDPSET2 to SETVDP2
Screen 58:
Switch Lines 9 & 10
In new Line 9, change 300 ! SATRto 300 ' SATR
Screen 59, Line 9, between SWAP and AND
Change OOFF to OOFE
Everybody & his brother—

Screen 72 Line 5:
PAB_ADDR to PAB-ADDR

Jim Vincent—

Original Manual, Chapter 6, Page 10, Line 1 (see this manual, footnote 10, page 37):
HEX 3800 ' SATR !

Original Manual, Chapter 10, Page 3, Line 20 (see this manual, footnote 17, page 70):
: DOWN -100 ALLOT DROP ;

See also the corrections and clarifications in the Editor’s Notes in Appendix G .

Appendix K Diskette Format Details 199

Appendix K Diskette Format Details

The information in this section is based on TI’s Software Specifications for the 99/4 Disk
Peripheral (March 28, 1983).

The original disk drives supplied by TI supported only single-sided, single-density (SSSD), 90-
KB diskettes. The TI Forth system was designed around and supplied in this disk format.
Though different formats are possible, we will consider the usual format of 256 bytes per sector
and 40 tracks per side. The following table shows possible formats with 256 bytes/sector and 40
tracks/side:

Disk Type Sides Density Seﬁ:g(s/T Total Sectors Capacity
SSSD 1 single 9 360 90 KB
DSSD 2 single 9 720 180 KB
SSDD 1 double 18 720 180 KB
DSDD 2 double 18 1440 360 KB

Compact Flash" 2 double 20 1600% 400 KB

The information in the following sections accrues to all the above formats:

K.1 Volume Information Block (VIB)

Byte # 1 Byte 2" Byte Byte #
0 1
Disk Volume Name (10 characters padded on the right with blanks)

8 9
10 Total Number of Sectors 11
12 Sectors/Track “D” 13
14 g “g 15
16 Protection (“P” or “”) Tracks/Side 17
18 # of Sides Density 19
20 21
Reserved
54 55
56 57
Allocation Bit Map (room for 1600 sectors)

254 255

19 This is a third-party peripheral expansion device with 400 KB virtual disks using Compact Flash memory on
devices named nanoPEB and CF7+ (see website: http.//webpages.charter.net/nanopeb/)

20 1600 sectors is the maximum possible number of sectors that can be managed by the current specification.

200 K.1 Volume Information Block (VIB)

Sector 0 contains the volume information block (VIB). The layout is shown in the above table.

K.2 File Descriptor Index Record (FDIR)

Sector 1 contains the file descriptor index record (FDIR). It can hold up to 127 2-byte entries,
each pointing to a file descriptor record (FDR—see next section). These pointers are
alphabetically sorted by the file names to which they point. This list of pointers starts at the
beginning of sector 1 and ends with a pointer value of 0.

K.3 File Descriptor Record (FDR)

Byte # 1 Byte 2" Byte Byte #
0 1
File Name (10 characters padded on the right with blanks)

8 9
10 Reserved 11
12 File Status Flags ‘ # of Records/Sector (0 for program) |13
14 # of Sectors currently allocated (not counting this FDR) 15
16| EOF Offset (bytes in last Sector) ‘ Bytes/Record 17
18| # of Records (Fixed) or # of Sectors (Variable)—bytes are in reverse order |19
20 21
Reserved
26 27
28 29

Data Chain Pointer Blocks (3 bytes/block encoding two 12-bit numbers that

indicate cluster start and highest, cumulative sector offset)

254 255

There can be as many as 127 file descriptor records (FDRs) laid out as in the above table. There
are no subdirectories. FDRs will start in sector 2 and continue, at least, until sector 33, unless a
file allocation requires more space than is available in sectors 34 — end-of-disk, in which case the
system will begin allocating space for the file in the first available sector in sectors 3 — 33. This
is done “to obtain faster directory search response times”?'. Each FDR beyond 32 files will be
placed in the first available sector.

Byte 12 contains file status flags defined as follows, with bit 0 as the least significant bit:

Bit # | Description

0 | Program or Data file (0 = Data; 1 = Program)
1 | Binary or ASCII data (0 = ASCIIL, DISPLAY file; 1 = Binary, INTERNAL or program file)
2 | Reserved
3 | PROTECT flag (0 = not protected; 1 = protected)
4-6 | Reserved

7 | FIXED/VARIABLE flag (0 = fixed-length records; 1 = variable-length records)

21 Software Specifications for the 99/4 Disk Peripheral (March 28, 1983), p. 19.

Appendix K Diskette Format Details 201

The cluster blocks listed in bytes 28 — 255 of the FDR each contain 2 12-bit (3-nybble?)
numbers. The first points to the beginning sector of that cluster of contiguous sectors and the
second is the sector offset reached by that cluster. If we label the 3 nybbles of the cluster pointer
as n, — n, and the 3 nybbles of the cumulative sector offset as m, — m,, with the subscripts

indicating the significance of the nybble, then the 3 bytes are laid out as follows:
Byte 1: n,n, Byte 2: mn, Byte 3: mym,

The actual 12-bit numbers, then, are
Cluster Pointer: n,n,n, Sector Offset: m,m,m,

For example, the following represents 2 blocks in the FDR for a file with 2 clusters allocated:
Actual layout in the FDR: 4D20h 5F05h FO60h
1** Cluster Pointer: 04Dh (77,,)” Record Offset: 5F2h (1522,,)

2™ Cluster Pointer: 005h (5,,) Record Offset: 60Fh (1551,,)

The above example represents a file, the data for which occupies 1552 sectors on the disk. If we
assume that no files have been deleted in this case, you should also be able to deduce that there
are only 3 files on the disk because the second cluster starts in sector 5 and occupies all sectors
from 5 — 33, which should tell you there are 3 FDRs before this cluster was allocated: Sector 0
(VIB), sector 1 (FDIR), sector 2 (FDR of first file), sector 3 (FDR of second file), sector 4 (FDR
of third file and sector 5 (second cluster start of the third file, the first two occupying sectors 34 —
76 by inference). Furthermore, the disk contains 1600 sectors because that is the maximum and
the first cluster ended in the 1600™ sector of the disk (1% cluster starts in sector 77 and ends 1522
sectors later in sector 1599).

K.4 Comparison of Tl Forth and Tl File System Layouts on the
Same Disk

The TI file system layout has been detailed earlier in this appendix. The TI Forth system is based
on 1-KB blocks or screens that each consist of 16 lines of 64 characters. TI Forth screens start in
the first sector of the disk and contiguously occupy the entire disk with each screen consuming 4
contiguous sectors (4 - 256 = 1024 bytes/screen). The TI Forth system reads and writes screens
using direct sector access, thus making it possible to easily destroy the normal file-system layout
of the system disk and, less so, work disks that have been set up by DISK-HEAD or the method of
§ L.2 if you are not careful. The sections that follow show the two layouts side by side to make
it easier to understand the relationship of the 128-byte file records with where they appear on TI
Forth screens.

22 A nybble (also nibble) is half of one byte (8 bits) and is equal to 4 bits. The editor prefers “nybble” to “nibble”
because of its obvious relationship to “byte”. 2 nybbles = 1 byte.

23 The subscript, 10, indicates base 10 (decimal).

24 This example is taken from one of my (Lee Stewart’s) Compact Flash volumes.

202 K.4.1 TI Forth System Disk

K.4.1 Tl Forth System Disk

The TI Forth system disk of the original 90-KB disk is shown in the following table /[Note: A
bold line in the body of this table and the next represents the beginning line of a file.]:

Record Forth
Sector | Bytes | Record File Name Contents (Characters as DOSIBM ASCI) Screen | Line
0 %6 | 0 |{vB} TI/FORTH @NODSK . .vvtitttiiie ittt i 010
1| % 0 |{FIR} T 014
2| 2% | 0 |{FDR}FORTH FORTH CWAP L e et e e e 0138
$ | %6 | 0 |{FDR)}FORTHSAVE | FORTHSAVE ..©..&(........... P, s e 011
L | % | 0 |{FDR}SYS-SCRNS | SYS-SCRNS ...®@8.Cpe........ MA<RDIL . L e 110
51 128 | 566 [SYSSCRNS | ettt et e e e e e e e e e e e e 1|4
8 | 128 | 572 |SYS-SCRNS TI FORTH 210
SYS-SCRNS 2|1
128 | 573 |SYS-SCRNS THIS VERSION OF THE FORTH LANGUAGE)
SYS-SCRNS IS BASED ON THE fig-FORTH MODEL 2|3
9 | 128 | 5 |SYS-SCRNS 204
SYS-SCRNS THE ADDRESS OF THE FORTH INTEREST GROUP IS: 205
128 | 575 |SYS-SCRNS 21 6
SYS-SCRNS FORTH INTEREST GROUP 27
10 | 128 | 56 | SYS-SCRNS P.0. BOX 1105 2|8
SYS-SCRNS SAN CARLOS, CA 94070 219
128 | 577 | SYS-SCRNS 2|10
SYS-SCRNS TEXAS INSTRUMENTS PERSONNEL WITH SIGNIFICANT 21
| 128 | 58 |SYS-SCRNS INPUT TO THIS VERSION INCLUDE: R
SYS-SCRNS LEON TIETZ 28
128 | 519 |SYS-SCRNS LESLIE 0'HAGAN 2 1
SYS-SCRNS EDWARD E. FERGUSON 215
2| 128 | 580 |SYS-SCRNS (WELCOME SCREEN) © @ GOTOXY ." BOOTING..." CR 310
SYS-SCRNS BASE->R HEX 10 83C2 C! (QUIT OFF!) 11
128 | 58 | SYS-SCRNS DECIMAL (84 LOAD) 20 LOAD 16 SYSTEM MENU 302
SYS-SCRNS HEX 68 USER VDPMDE 1 VDPMDE ! DECIMAL 303
B 18| 562 |SYS-SCRNS : -SYNONYMS 33 LOAD ; : -EDITOR 34 LOAD ; : -COPY 39 LOAD ; 3|4
SYS-SCRNS : -DUMP 42 LOAD ; : -TRACE 44 LOAD ; : -FLOAT 45 LOAD ; 313
128 | 583 | SYS-SCRNS i -TEXT 51 LOAD ; : -GRAPH1 52 LOAD ; : -MULTI 53 LOAD ; 3| ¢
SYS-SCRNS : -GRAPH2 54 LOAD ; : -SPLIT 55 LOAD ; : -GRAPH 57 LOAD ; 37
1| 128 | 584 | SYS-SCRNS : -FILE 68 LOAD ; : -PRINT 72 LOAD ; : -CODE 74 LOAD ; 308

Appendix K Diskette Format Details 203
Record Forth
Sector | Bytes |Record | File Name Contents (Characters as DOSIBM ASCI Screen | Line

SYS-SCRNS : -ASSEMBLER 75 LOAD ; : -64SUPPORT 22 LOAD ; 319

128 | 585 | SYS-SCRNS : -VDPMODES -TEXT -GRAPH1 -MULTI -GRAPH2 -SPLIT ; 310
SYS-SCRNS : -BSAVE 83 LOAD ; : -CRU 88 LOAD ; 3|1

5| 128 | 586 | SYS-SCRNS 3|12
SYS-SCRNS 38

128 | 567 |SYS-SCRNS 3| L
SYS-SCRNS R->BASE 310

13 128 | 622 | SYS-SCRNS 0000066000060000060000006000000000000006000006G0000G0000600006G00000G00 8| &
000000060060006600000600000066000006G000006G00000666G0000060000C0 815

623 000000060060006600000600000066000006G000006G000000GG000006000000 81 6
000000060060006600000600000060000006G000006G000006G6G000006000000 8|7

% FORTH .. .BOOT A..B..B..B..B%(B..BDSBK1B.FBORBTHBSABVEY..B.IB.JB. .B. 8 8
39 FORTHSAVE 42, . i s e Q... :"...:1. <..N....4 6. .<4b4d 9 112
[/) 0 | SYS-SCRNS 000C000000G0000000CC0 9|4
SYS-SCRNS 0000066000060000060000006000000000000006000006G0000G0000060000G0000G00 915

8| 128 8 | SYS-SCRAS (CONDITIONAL LOAD) 010
SYS-SCRNS : MENU CR 272 265 DO I MESSAGE CR LOOP CR CR CR ; 0|1

128 9 | SYS-SCRNS : SLIT (--- ADDR OF STRING LITERAL) 20 | 2
SYS-SCRNS R> DUP C@ 1+ =CELLS OVER + >R ; 0|3

8 | 128 | 10 | SYS-SCRNS 0 |4
SYS-SCRNS : WLITERAL (WLITERAL word) 0|5

128 1t | SYS-SCRNS BL STATE @ 0|6
SYS-SCRNS IF COMPILE SLIT WORD HERE C@ 1+ =CELLS ALLOT 0 |7

83 128 12 | SYS-SCRNS ELSE WORD HERE ENDIF ; IMMEDIATE --> 201 8
SYS-SCRNS -SYNONYMS -EDITOR -COPY 2019

128 | 13 | SYS-SCRNS -DUMP -TRACE -FLOAT 010
SYS-SCRNS -TEXT -GRAPH1 -MULTI 0 |1

8 | 18 | 14| SYSSCRNS -GRAPH2 -SPLIT -VDPMODES 00
SYS-SCRNS -GRAPH -FILE -PRINT 0118

128 | 15 | SYS-SCRNS -CODE -ASSEMBLER -64SUPPORT 20 |1
SYS-SCRAS -BSAVE -CRU 05

39 | 128 | Se4 | SYS-SCRNS 8|12
SYS-SCRAS 9|03

128 | 565 |SYS-SCRNS 8 | W
SYS-SCRAS 8|5

204 K.4.2 TI Forth Work Disk

K.4.2 Tl Forth Work Disk
The TI Forth original, 90-KB format disk written by DISK-HEAD is shown in the following table:

Record Forth
Sector | Bytes | Record File Name Contents (Characters as DOSABM ASCI) Screen | Line
0| 256 0 |{VIB} FORTH OhODSK vttt s 010
1| 2 0 | {FIR} PP 04
21 % 0 |{FDR)SCREENS | SCREENS ...ece.Ple........ (G, e e 0138
3 128 | 652 | SCREENS 000000600000600000060000006000000600000666000066000000G000006G000 0112
SCREENS 0000000000606000000006060000060060600000000060606600600060000C6000000 08
33 | 128 | T3 |SCREENS 006006006060600600600006006G000000000600600G000G060060066G0G00000G00 8|4
128 SCREENS 006006006060600600600006006G000000600600600G000G060060066G0G00000G00 8|5
128 | T3 | SCREENS 00600600606060060060006006G000000000600600G000G060060066G0G00000G00 8|6
128 SCREENS 006006006060600600600006006G000000000600600G00G060060060G0G00600G00 8|7
%18 0 | SCREENS 6000000600600000000606060000006060000000060G000000000600G000000G0G00 818
128 SCREENS 006006006060600600600006006G000000600600600G000G06006000606G0G00600G00 819
128 SCREENS 0060060060660600600600006006G000000000600600G000G0600600060G0G00000000 8 |10
128 SCREENS 006006006060600600600006006G000000000600600G000G060060066G0G00000G00 8|1
359 | 128 | 650 | SCREENS 0060060060660600600600006006000000600600600G000G0600600060G0G00600G00 89 | 12
128 SCREENS 006006006060600600600006006G000000600600600G000G060060066G0G00000G00 89 | 13
128 | 651 | SCREENS 006006006060600600600006006G000000000600600G00G0660600060G0G00000G00 89 | 1
128 SCREENS 00600600606060060060006006G0006000000600600G00G0600600060G0G00000G00 8 | 5

Appendix L TI Forth System for Larger Disks 205

Appendix L Tl Forth System for Larger
Disks

Most users of TI Forth these days are using disk sizes that are larger than the original 90 KB disks
on which TI supplied TI Forth to TI-99/4A users groups at the end of 1983. This appendix will
show you how to put TI Forth on a larger system disk and how to create larger, non-system TI
Forth work disks.

L.1 Larger System Disk

With the following procedure, you can make a TI Forth system disk in a larger disk format:

1. Make a backup copy of the original system disk and use that below where “original
system disk” is indicated.

2. Format a disk with Disk Manager or a third-party disk manager to the desired size.

3. With the same disk manager program, copy “FORTH” from the original system disk to
the newly formatted disk.

4. Repeat (3) for “FORTHSAVE”.
Repeat (3) for “SYS-SCRNS”.

6. Put the following screen on an available blank screen on the original system disk (screens
30 — 32 should be available) and load it:

(Swell TI FORTH SYS-SCRNS file to fill disk 07SEP11 LES)
BASE->R : LSYS ; DECIMAL 68 CLOAD STAT 33 CLOAD RANDOMIZE
HEX 0 VARIABLE LESBUF 7E ALLOT 0 VARIABLE LASTREC
PABS @ A + LESBUF 1700 FILE SCRFIL
: FORTHSYS (size KB drive no ---)
SCRFIL SET-PAB RLTV DSPLY 80 REC-LEN
F-D" DSK .SYS-SCRNS" (filename to PAB--space for drive#)
31 + PAB-ADDR @ D + VSBW (drive# + 1 to ASCII & put in PAB)
OPN LESBUF 80 BLANKS (open file & blank fill buffer)
4 * 30 - 2 * 1- LASTREC ! LASTREC @ REC-NO (Set last rec#)

80 WRT (Write last record)

25C 23C DO (Restore screens 2-5)
I REC-NO RD LASTREC @ I + 26F - REC-NO WRT LOOP

CLSE ; (Close file) R->BASE

7. Type the size in KB of the new system disk, the zero-based drive number and the word
FORTHSYS . If your new system disk is 360 KB and the drive number is 1 (DSK?2), type
the following on the keyboard:

360 1 FORTHSYS
To accommodate your larger disk, you now need to add to line 12 of Forth screen 3:

360 DISK_SIZE !

Depending on whether you use 2 or 3 disk drives, you might also want to follow that with:

206

L.1 Larger System Disk

720 DISK_HI ! or 1080 DISK_HI !

When you are done using FORTHSYS , you can get rid of its part of the dictionary by executing

FORGET LSYS

L.2 Larger Work Disk

With the procedure delineated below (an alternative to DISK-HEAD), you can make a TI Forth
work disk in a larger disk format. If you study it, you will see at a higher level what it is that
DISK-HEAD is actually doing at a lower level. An updated, more general-purpose DISK-HEAD
(as DSK-HD) follows in § L.3 .

1.
2.

Format a disk with Disk Manager or a third-party disk manager to the desired size.

Put the following screen on an available blank screen on your new system disk (there are
now plenty of empty screens beyond screen 89) and load it:

(Create TI FORTH work disk larger than 90 KB 07SEP11 LES)
BASE->R DECIMAL : LWRK ; 68 CLOAD STAT 33 CLOAD RANDOMIZE
39 CLOAD DISK-HEAD
HEX 0 VARIABLE LESBUF 7E ALLOT
PABS @ A + LESBUF 1700 FILE SCRFIL
: FORTHWRK (size KB drive_no ---) OVER OVER
SCRFIL SET-PAB RLTV DSPLY 80 REC-LEN
F-D" DSK .SCREENS" (filename to PAB--space for drive#)
31 + PAB-ADDR @ D + VSBW (drive# + 1 to ASCII & put in PAB)
OPN LESBUF 80 BLANKS (open file & blank fill buffer)
4 * 3 -2 * 1- REC-NO (Calculate last record # & set it)

80 WRT CLSE (Write last record & close file)
* BLOCK !" FORTH " UPDATE FLUSH (write disk name->VIB)
; R->BASE

Ensure that DISK_SIZE and DISK_HI are properly set before executing FORTHWRK .
If the work disk is in drive 0, be sure to set DISK_LO to 0 before executing FORTHWRK .

Type the size in KB of the new work disk, the zero-based drive number and the word
FORTHWRK . If your new work disk is 360 KB and the drive number is 1 (DSK2), type
the following on the keyboard:

360 1 FORTHWRK

When you are done using FORTHWRK , you can get rid of its part of the dictionary by executing

FORGET LWRK

L.3 Updating Disk Utilities for Larger Disks

With disks larger than 90 KB, you will need either to update several disk utility words on the
system disk or avoid using them with any but 90 KB disks. These words are

Appendix L TI Forth System for Larger Disks 207

Word Screen Lines
DTEST 39 8
FORTH-COPY 39 14
DISK-HEAD 40 0-15
FORMAT-DISK 33 7

The above words are redefined in this section to remove hardwired disk sizes from the
definitions. The words may then be used for any size disk. You can replace the original
definitions of these words on the Forth system screens indicated above except for
FORMAT-DISK , which will require a bit more work. Always remember to keep backups (more
than one!) of the original disks!! Please note, also, that the stack effects are the same for only
two of these redefined words (DTEST , FORTH-COPY) as for the originals. The other two words
(DSK-HD , FMT-DSK) are actually renamed from the originals because their stack effects are
different. If you wish to also use the original names with the new stack effects, simply
uncomment the definitions that follow each new definition. If you do uncomment the definition
of FORMAT-DISK, be sure to remove the original definition on screen 33 and, perhaps, add a
conditional load for the screen where you put FMT-DSK on the bottom line of screen 33. With
FMT -DSK on screen 100, the new bottom line for screen 33 would be

DECIMAL 100 CLOAD FMT-DSK R->BASE

You should probably have a definition for DISK-HEAD on screen 40 because other system screens
use it for conditional loads. Either uncomment the definition after DSK-HD , make it a null
definition (: DISK-HEAD ;) or just bite the bullet by changing the name of DSK-HD to DISK-
HEAD in the new definition and try your best to remember the new stack effects.

Before executing any of these words, be sure that DISK_SIZE , DISK_LO and DISK_HI are
properly set.

DTEST ()
: DTEST DISK_SIZE @ 6 DO I DUP . BLOCK DROP LOOP ;
FORTH-COPY (---)

: FORTH-COPY DISK_SIZE @ 0 DO I DUP . DISK SIZE @ + I
SCOPY LOOP ;

208

L.3 Updating Disk Utilities for Larger Disks

DSK-HD

(drive sides density ---)

(WRITE A HEAD COMPATABLE WITH THE DISK MANAGER 07SEP11 LES)
BASE->R HEX : DSK-HD SWAP SWPB + >R DISK_SIZE * DUP

CLEAR BLOCK (START SECTOR 0)

DUP !" FORTH " DUP A + DISK_SIZE @ 4 * SWAP !

DUP C + 944 SWAP ! DUP E + 534B SWAP ! DUP 10 + 2028 SWAP '!
DUP 12 + R> SWAP ! DUP 14 + 24 0 FILL DUP 38 + C8 FF FILL
100 + (START SECTOR 1) DUP 2 SWAP ! DUP 2+ FE 00 FILL

100 + (START SECTOR 2) DUP !™ SCREENS " DUP A + 0 SWAP '!
DUP C + 2 SWAP ! DUP E + DISK SIZE @ 4 * 3 - DUP >R SWAP '!
DUP 10 + 80 SWAP ! DUP 12 + R> 2 * SWPB SWAP !

DUP 14 + 8 0 FILL >R 22 R 1C + C! DISK_SIZE @ 4 * 1- DUP 34 -
DUP F AND 4 SLA R 1D + C! 4 SRA R 1E + C!

03 R 1F + C! DUP 3 - F AND 4 SLAR 20 + C! 4 SRA R 21 + C!
R> 22 + ODE 0 FILL UPDATE FLUSH

: DISK-HEAD DSK-HD ;) R->BASE

Be advised that DSK-HD does CLEAR sectors 0 — 3 (screen 0 if disk is in drive 0) of the
disk as does the original DISK-HEAD . Also, note that unlike DISK-HEAD , DSK-HD
requires three numbers on the stack, viz., the drive number, the number of sides (1 or 2)
and the density (1 or 2). To invoke it for a DSDD disk in drive 1 (DSK2), you would

type

FMT-DSK

1 2 2 DSK-HD

(drive sides density --- sectors)

(Format Disk, given drive #, sides & density 07SEP1l LES)
BASE->R DECIMAL 33 CLOAD RANDOMIZE 0 CLOAD FMT-DSK HEX
: FMT-DSK (drive sides density --- sectors)

1 PABS @ VSBW 11 PABS @ 1+ VSBW (subroutine 11h)
8350 C! (density)
8351 C! (sides)
1+ 834C C! (drive)
28 834D C! (40 tracks)
DISK BUF @ 834E ! (VDP buffer)
PABS @ 8356 ! OA OE SYSTEM (call DSRLNK subroutine)
834A @ (leave sectors formatted)
(: FORMAT-DISK FMT-DSK ;) R->BASE

This disk-formatting word requires on the stack the drive number, number of sides and
density of the disk to be formatted. To format a 360-KB DSDD diskette in drive 2
(DSK3), you would type

2 2 2 FMT-DSK

The following two lines will each format a 90-KB SSSD diskette:

2 1 1 FMT-DSK
2 FORMAT-DISK (if you keep the original definition)

Appendix L TI Forth System for Larger Disks 209

If you were to store the above definition of FMT-DSK on screen 100 and would like it to load
when the system-synonyms screen loads (the screen with FORMAT-DISK on it), then replace line
15 on screen 33 with

DECIMAL 100 CLOAD FMT-DSK R->BASE

You might also want to consider deleting the definition of FORMAT-DISK from screen 33 because
you will not need it with the above word. It is probably not a good idea to rename the new
definition FORMAT-DISK because its stack effects are so different from the old definition and
could be confusing.

As with FORMAT-DISK , FMT-DSK creates a disk that can only be used by TI Forth. There is no
information written to sectors 0 and 1 that will allow file-access words to work with the disk. If
you run DSK-HD after FMT-DSK, you can then use the disk for file access from TI Forth, TI
BASIC, etc. A clunky way to create a blank disk would be to delete the file “SCREENS” from
the disk after running DSK-HD by using file-access words described in Chapter 8. You can
(carefully!) change the name of the disk by editing the first 10 bytes of Forth screen 0 for a disk
in drive 0 and after setting DISK_LO to 0. Just remember to use names of no more than 10
characters that contain no spaces or periods. Spaces should be used after the name to fill out the
10 characters in this field.

	Dedication
	1 Introduction
	 1.1 Editor’s Note
	 1.2 Starting Forth

	2 Getting Started
	 2.1 Stack Manipulation
	 2.2 Arithmetic and Logical Operations
	 2.3 Comparison Operations
	 2.4 Memory Access Operations
	 2.5 Control Structures
	 2.6 Input and Output to/from the Terminal
	 2.7 Numeric Formatting
	 2.8 Disk-Related Words
	 2.9 Defining Words
	 2.10 Miscellaneous Words

	3 How to Use the Forth Editor
	 3.1 Forth Screen Layout Caveat
	 3.2 The Two TI Forth Editors
	 3.3 Editing Instructions

	4 Memory Maps
	 4.1 VDP Memory Map
	 4.2 CPU Memory
	 4.3 CPU RAM Pad
	 4.4 Low Memory Expansion
	 4.5 High Memory Expansion

	5 System Synonyms and Miscellane­ous Utilities
	 5.1 System Synonyms
	 5.1.1 VDP RAM Read/Write
	 5.1.2 Extended Utilities: GPLLNK, XMLLNK AND DSRLNK
	 5.1.3 VDP Write-Only Registers
	 5.1.4 VDP RAM Single-Byte Logical Operations

	 5.2 Disk Utilities
	 5.2.1 Disk Formatting Utility
	 5.2.2 Disk and Screen Copying Utilities

	 5.3 Listing Utilities
	 5.4 Debugging
	 5.4.1 Dump Information to Terminal
	 5.4.2 Tracing Word Execution
	 5.4.3 Recursion

	 5.5 Random Numbers
	 5.6 Miscellaneous Instructions

	6 An Introduction to Graphics
	 6.1 Graphics Modes
	 6.2 Forth Graphics Words
	 6.3 Color Changes
	 6.4 Placing Characters on the Screen
	 6.5 Defining New Characters
	 6.6 Sprites
	 6.6.1 Magnification
	 6.6.2 Sprite Initialization
	 6.6.3 Using Sprites in Bit-Map Mode
	 6.6.4 Creating Sprites
	 6.6.5 Sprite Automotion
	 6.6.6 Distance and Coincidences between Sprites
	 6.6.7 Deleting Sprites

	 6.7 Multicolor Graphics
	 6.8 Using Joysticks
	 6.9 Dot Graphics
	 6.10 Special Sounds
	 6.11 Constants and Variables Used in Graphics Programming

	7 The Floating Point Support Package
	 7.1 Floating Point Stack Manipulation
	 7.2 Floating Point Fetch and Store
	 7.3 Floating Point Conversion Words
	 7.4 Floating Point Number Entry
	 7.5 Floating Point Arithmetic
	 7.6 Floating Point Comparison Words
	 7.7 Formatting and Printing Floating Point Numbers
	 7.8 Transcendental Functions
	 7.9 Interface to the Floating Point Routines

	8 Access to File I/O Using TI-99/4A Device Service Routines
	 8.1 The Peripheral Access Block (PAB)
	 8.2 File Setup and I/O Variables
	 8.3 File Attribute Words
	 8.4 Words that Perform File I/O
	 8.5 Alternate Input and Output
	 8.6 File I/O Example 1: Relative Disk File
	 8.7 File I/O Example 2: Sequential RS232 File

	9 The TI Forth 9900 Assembler
	 9.1 TMS9900 Assembly Mnemonics
	 9.2 Forth’s Workspace Registers
	 9.3 Workspace Register Addressing
	 9.4 Symbolic Memory Addressing
	 9.5 Workspace Register Indirect Addressing
	 9.6 Workspace Register Indirect Auto-increment Addressing
	 9.7 Indexed Memory Addressing
	 9.8 Addressing Mode Words for Special Registers
	 9.9 Handling the Forth Stacks
	 9.10 Structured Assembler Constructs
	 9.11 Assembler Jump Tokens
	 9.12 Assembly Example for Structured Constructs

	10 Interrupt Service Routines (ISRs)
	 10.1 Installing a Forth Language Interrupt Service Routine
	 10.2 An Example of an Interrupt Service Routine
	 10.3 Installing the ISR
	 10.4 Some Additional Thoughts Concerning the Use of ISRs

	11 Potpourri
	 11.1 BSAVE and BLOAD
	 11.1.1 Customizing How TI Forth Boots Up
	 11.1.2 An Overlay System with BSAVE/BLOAD
	 11.1.3 An Easier Overlay System in Source Code

	 11.2 Conditional Loads
	 11.3 Memory Resident Messages
	 11.4 CRU Words

	12 TI Forth Dictionary Entry Structure
	 12.1 Link Field
	 12.2 Name Field
	 12.3 Code Field
	 12.4 Parameter Field

	 Appendix A ASCII Keycodes (Sequential Order)
	 Appendix B ASCII Keycodes (Keyboard Order)
	 Appendix C Differences between Starting FORTH and TI Forth
	 Appendix D The TI Forth Glossary
	 D.1 Explanation of Some Terms and Abbreviations
	 D.2 TI Forth Word Descriptions

	 Appendix E User Variables in TI Forth
	 E.1 TI Forth User Variables (Address Offset Order)
	 E.2 TI Forth User Variables (Variable Name Order)

	 Appendix F TI Forth Load Option Directory
	 F.1 Option: -SYNONYMS
	 F.2 Option: -EDITOR (40-Column Editor)
	 F.3 Option: -COPY
	 F.4 Option: -DUMP
	 F.5 Option: -TRACE
	 F.6 Option: -FLOAT
	 F.7 Option: -TEXT
	 F.8 Option: -GRAPH1
	 F.9 Option: -MULTI
	 F.10 Option: -GRAPH2
	 F.11 Option: -SPLIT
	 F.12 Option: -VDPMODES
	 F.13 Option: -GRAPH
	 F.14 Option: -FILE
	 F.15 Option: -PRINT
	 F.16 Option: -CODE
	 F.17 Option: -ASSEMBLER
	 F.18 Option: -64SUPPORT (64-Column Editor)
	 F.19 Option: -BSAVE
	 F.20 Option: -CRU

	 Appendix G Assembly Source for CODEd Words
	 Appendix H Error Messages
	 Appendix I Contents of the TI Forth Diskette
	 Appendix J TI Forth Bugs
	 Appendix K Diskette Format Details
	 K.1 Volume Information Block (VIB)
	 K.2 File Descriptor Index Record (FDIR)
	 K.3 File Descriptor Record (FDR)
	 K.4 Comparison of TI Forth and TI File System Layouts on the Same Disk
	 K.4.1 TI Forth System Disk
	 K.4.2 TI Forth Work Disk

	 Appendix L TI Forth System for Larger Disks
	 L.1 Larger System Disk
	 L.2 Larger Work Disk
	 L.3 Updating Disk Utilities for Larger Disks

